Hai Lv, Fengjuan Shi, Huimin Yin, Yongjun Jiao, Pingmin Wei
{"title":"基于核壳蛋白特异性抗体开发用于检测 SARS-CoV-2 变体的双抗体夹心酶联免疫吸附测定法","authors":"Hai Lv, Fengjuan Shi, Huimin Yin, Yongjun Jiao, Pingmin Wei","doi":"10.1111/1348-0421.13173","DOIUrl":null,"url":null,"abstract":"<p>The COVID-19 pandemic, driven by the SARS-CoV-2 virus, has posed a severe threat to global public health. Rapid, reliable, and easy-to-use detection methods for SARS-CoV-2 variants are critical for effective epidemic prevention and control. The N protein of SARS-CoV-2 serves as an ideal target for antigen detection. In this study, we achieved soluble expression of the recombinant SARS-CoV-2 N protein using an Escherichia coli expression system and generated specific monoclonal antibodies by immunizing BALB/c mice. We successfully developed 10 monoclonal antibodies against the N protein, designated 5B7, 5F2-C11, 5E2-E8, 6C3-D8, 7C8, 9F2-E9, 12H5-D11, 13G2-C10, 14E9-F6, and 15H3-E10. Using these antibodies, we established a sandwich ELISA with 6C3-D8 as the capture antibody and 5F2-C11 as the detection antibody. The assay demonstrated a sensitivity of 0.78 ng/mL and showed no cross-reactivity with MERS-CoV, HCoV-OC43, HCoV-NL63, and HCoV-229E. Furthermore, this method successfully detected both wild-type SARS-CoV-2 and its variants, including Alpha, Beta, Delta, and Omicron. These findings indicate that our sandwich ELISA exhibits excellent sensitivity, specificity, and broad-spectrum applicability, providing a robust tool for detecting SARS-CoV-2 variants.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":"68 11","pages":"393-398"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a double-antibody sandwich ELISA for detection of SARS-CoV-2 variants based on nucleocapsid protein-specific antibodies\",\"authors\":\"Hai Lv, Fengjuan Shi, Huimin Yin, Yongjun Jiao, Pingmin Wei\",\"doi\":\"10.1111/1348-0421.13173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The COVID-19 pandemic, driven by the SARS-CoV-2 virus, has posed a severe threat to global public health. Rapid, reliable, and easy-to-use detection methods for SARS-CoV-2 variants are critical for effective epidemic prevention and control. The N protein of SARS-CoV-2 serves as an ideal target for antigen detection. In this study, we achieved soluble expression of the recombinant SARS-CoV-2 N protein using an Escherichia coli expression system and generated specific monoclonal antibodies by immunizing BALB/c mice. We successfully developed 10 monoclonal antibodies against the N protein, designated 5B7, 5F2-C11, 5E2-E8, 6C3-D8, 7C8, 9F2-E9, 12H5-D11, 13G2-C10, 14E9-F6, and 15H3-E10. Using these antibodies, we established a sandwich ELISA with 6C3-D8 as the capture antibody and 5F2-C11 as the detection antibody. The assay demonstrated a sensitivity of 0.78 ng/mL and showed no cross-reactivity with MERS-CoV, HCoV-OC43, HCoV-NL63, and HCoV-229E. Furthermore, this method successfully detected both wild-type SARS-CoV-2 and its variants, including Alpha, Beta, Delta, and Omicron. These findings indicate that our sandwich ELISA exhibits excellent sensitivity, specificity, and broad-spectrum applicability, providing a robust tool for detecting SARS-CoV-2 variants.</p>\",\"PeriodicalId\":18679,\"journal\":{\"name\":\"Microbiology and Immunology\",\"volume\":\"68 11\",\"pages\":\"393-398\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology and Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1348-0421.13173\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1348-0421.13173","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Development of a double-antibody sandwich ELISA for detection of SARS-CoV-2 variants based on nucleocapsid protein-specific antibodies
The COVID-19 pandemic, driven by the SARS-CoV-2 virus, has posed a severe threat to global public health. Rapid, reliable, and easy-to-use detection methods for SARS-CoV-2 variants are critical for effective epidemic prevention and control. The N protein of SARS-CoV-2 serves as an ideal target for antigen detection. In this study, we achieved soluble expression of the recombinant SARS-CoV-2 N protein using an Escherichia coli expression system and generated specific monoclonal antibodies by immunizing BALB/c mice. We successfully developed 10 monoclonal antibodies against the N protein, designated 5B7, 5F2-C11, 5E2-E8, 6C3-D8, 7C8, 9F2-E9, 12H5-D11, 13G2-C10, 14E9-F6, and 15H3-E10. Using these antibodies, we established a sandwich ELISA with 6C3-D8 as the capture antibody and 5F2-C11 as the detection antibody. The assay demonstrated a sensitivity of 0.78 ng/mL and showed no cross-reactivity with MERS-CoV, HCoV-OC43, HCoV-NL63, and HCoV-229E. Furthermore, this method successfully detected both wild-type SARS-CoV-2 and its variants, including Alpha, Beta, Delta, and Omicron. These findings indicate that our sandwich ELISA exhibits excellent sensitivity, specificity, and broad-spectrum applicability, providing a robust tool for detecting SARS-CoV-2 variants.
期刊介绍:
Microbiology and Immunology is published in association with Japanese Society for Bacteriology, Japanese Society for Virology, and Japanese Society for Host Defense Research. It is peer-reviewed publication that provides insight into the study of microbes and the host immune, biological and physiological responses.
Fields covered by Microbiology and Immunology include:Bacteriology|Virology|Immunology|pathogenic infections in human, animals and plants|pathogenicity and virulence factors such as microbial toxins and cell-surface components|factors involved in host defense, inflammation, development of vaccines|antimicrobial agents and drug resistance of microbes|genomics and proteomics.