{"title":"使用 K-means 聚类算法的基于个人标记密度的高性能光学标记识别(OMR)系统","authors":"Yasin Sancar, Ugur Yavuz, Isil Karabey Aksakalli","doi":"10.1007/s11042-024-20218-7","DOIUrl":null,"url":null,"abstract":"<p>To evaluate multiple choice question tests, optical forms are commonly used for large-scale exams and these forms are read by the OMR (Optical Mark Recognition) scanners. However, OMR scanners often misinterpret marks that have not been fully erased, which can lead to incorrect readings. To overcome that shortcoming and reduce the time and labor lost in the assessment process, we developed a novel system based on the density of each individual’s markings, providing a more personalized and accurate approach. Instead of reading according to a specific optical form template, a dynamic and flexible structure was generated where users can create own templates and obtain the model that reads according to that template. We also optimized certain aspects of the system for efficiency, such as image memory transfer and QR code reading. These optimizations significantly increase the performance of the OMR scanners. One of the key issues addressed is inaccurate reading of OMR scanners when a student doesn’t fully erase their markings or when markings are faint. After the scanning process, the proposed approach uses a K-means clustering algorithm to classify different density markings. This technique identifies each student’s personal marking density, enabling a more accurate interpretation of their responses. According to the experimental results, we performed 97.7% improvement compared to the misread optics scanned by the conventional OMR devices. In tests performed on 265.816 optical forms, we obtained an accuracy rate of 99.98% and a reading time of 0.12 seconds per optical form.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":"4 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personal mark density-based high-performance Optical Mark Recognition (OMR) system using K-means clustering algorithm\",\"authors\":\"Yasin Sancar, Ugur Yavuz, Isil Karabey Aksakalli\",\"doi\":\"10.1007/s11042-024-20218-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To evaluate multiple choice question tests, optical forms are commonly used for large-scale exams and these forms are read by the OMR (Optical Mark Recognition) scanners. However, OMR scanners often misinterpret marks that have not been fully erased, which can lead to incorrect readings. To overcome that shortcoming and reduce the time and labor lost in the assessment process, we developed a novel system based on the density of each individual’s markings, providing a more personalized and accurate approach. Instead of reading according to a specific optical form template, a dynamic and flexible structure was generated where users can create own templates and obtain the model that reads according to that template. We also optimized certain aspects of the system for efficiency, such as image memory transfer and QR code reading. These optimizations significantly increase the performance of the OMR scanners. One of the key issues addressed is inaccurate reading of OMR scanners when a student doesn’t fully erase their markings or when markings are faint. After the scanning process, the proposed approach uses a K-means clustering algorithm to classify different density markings. This technique identifies each student’s personal marking density, enabling a more accurate interpretation of their responses. According to the experimental results, we performed 97.7% improvement compared to the misread optics scanned by the conventional OMR devices. In tests performed on 265.816 optical forms, we obtained an accuracy rate of 99.98% and a reading time of 0.12 seconds per optical form.</p>\",\"PeriodicalId\":18770,\"journal\":{\"name\":\"Multimedia Tools and Applications\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimedia Tools and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11042-024-20218-7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Tools and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11042-024-20218-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Personal mark density-based high-performance Optical Mark Recognition (OMR) system using K-means clustering algorithm
To evaluate multiple choice question tests, optical forms are commonly used for large-scale exams and these forms are read by the OMR (Optical Mark Recognition) scanners. However, OMR scanners often misinterpret marks that have not been fully erased, which can lead to incorrect readings. To overcome that shortcoming and reduce the time and labor lost in the assessment process, we developed a novel system based on the density of each individual’s markings, providing a more personalized and accurate approach. Instead of reading according to a specific optical form template, a dynamic and flexible structure was generated where users can create own templates and obtain the model that reads according to that template. We also optimized certain aspects of the system for efficiency, such as image memory transfer and QR code reading. These optimizations significantly increase the performance of the OMR scanners. One of the key issues addressed is inaccurate reading of OMR scanners when a student doesn’t fully erase their markings or when markings are faint. After the scanning process, the proposed approach uses a K-means clustering algorithm to classify different density markings. This technique identifies each student’s personal marking density, enabling a more accurate interpretation of their responses. According to the experimental results, we performed 97.7% improvement compared to the misread optics scanned by the conventional OMR devices. In tests performed on 265.816 optical forms, we obtained an accuracy rate of 99.98% and a reading time of 0.12 seconds per optical form.
期刊介绍:
Multimedia Tools and Applications publishes original research articles on multimedia development and system support tools as well as case studies of multimedia applications. It also features experimental and survey articles. The journal is intended for academics, practitioners, scientists and engineers who are involved in multimedia system research, design and applications. All papers are peer reviewed.
Specific areas of interest include:
- Multimedia Tools:
- Multimedia Applications:
- Prototype multimedia systems and platforms