{"title":"开发出 90 级内隔离全固态叠加式布姆林脉冲发生器","authors":"Yuxin Hao;Hao Zhou;Song Qiu;Che Xu;Qingxiang Liu","doi":"10.1109/TPS.2024.3454114","DOIUrl":null,"url":null,"abstract":"The stacked Blumlein pulse generator (SBPG), famed for its exceptional voltage efficiency, represents a leading technological approach among direct-drive high-power microwave (HPM) drivers. This article presents a novel inner-isolated all solid-state SBPG (IISBPG), blending the advantages of SBPG topology and semiconductor switches. It thoroughly resolves high-voltage driver isolation issue, extending the application range of insulate-gate bipolar transistor (IGBT)-based SBPG. The presented IISBPG incorporates pulsed power bricks and isolation bricks. The pulsed power brick, consisting of a two-stage pulse forming network (PFN) and IGBT arrays, generates a high-voltage pulse of 10 kV. The isolation brick, equipped with common mode (CM) inductors and optical components, is used to alter the charging and discharging circuits and trigger the switch. A 90-stage IISBPG was constructed and tested. The results show that pulses can be superimposed to reach 432 kV, with a stable output current of 720 A.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 7","pages":"2959-2964"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a 90-Stage Inner-Isolated All Solid-State Stacked Blumlein Pulse Generator\",\"authors\":\"Yuxin Hao;Hao Zhou;Song Qiu;Che Xu;Qingxiang Liu\",\"doi\":\"10.1109/TPS.2024.3454114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stacked Blumlein pulse generator (SBPG), famed for its exceptional voltage efficiency, represents a leading technological approach among direct-drive high-power microwave (HPM) drivers. This article presents a novel inner-isolated all solid-state SBPG (IISBPG), blending the advantages of SBPG topology and semiconductor switches. It thoroughly resolves high-voltage driver isolation issue, extending the application range of insulate-gate bipolar transistor (IGBT)-based SBPG. The presented IISBPG incorporates pulsed power bricks and isolation bricks. The pulsed power brick, consisting of a two-stage pulse forming network (PFN) and IGBT arrays, generates a high-voltage pulse of 10 kV. The isolation brick, equipped with common mode (CM) inductors and optical components, is used to alter the charging and discharging circuits and trigger the switch. A 90-stage IISBPG was constructed and tested. The results show that pulses can be superimposed to reach 432 kV, with a stable output current of 720 A.\",\"PeriodicalId\":450,\"journal\":{\"name\":\"IEEE Transactions on Plasma Science\",\"volume\":\"52 7\",\"pages\":\"2959-2964\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Plasma Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10684023/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10684023/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Development of a 90-Stage Inner-Isolated All Solid-State Stacked Blumlein Pulse Generator
The stacked Blumlein pulse generator (SBPG), famed for its exceptional voltage efficiency, represents a leading technological approach among direct-drive high-power microwave (HPM) drivers. This article presents a novel inner-isolated all solid-state SBPG (IISBPG), blending the advantages of SBPG topology and semiconductor switches. It thoroughly resolves high-voltage driver isolation issue, extending the application range of insulate-gate bipolar transistor (IGBT)-based SBPG. The presented IISBPG incorporates pulsed power bricks and isolation bricks. The pulsed power brick, consisting of a two-stage pulse forming network (PFN) and IGBT arrays, generates a high-voltage pulse of 10 kV. The isolation brick, equipped with common mode (CM) inductors and optical components, is used to alter the charging and discharging circuits and trigger the switch. A 90-stage IISBPG was constructed and tested. The results show that pulses can be superimposed to reach 432 kV, with a stable output current of 720 A.
期刊介绍:
The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.