{"title":"利用深度学习架构上的加权多数表决融合多种色彩空间进行马铃薯叶病分类","authors":"Samaneh Sarfarazi, Hossein Ghaderi Zefrehi, Önsen Toygar","doi":"10.1007/s11042-024-20173-3","DOIUrl":null,"url":null,"abstract":"<p>Early identification of potato leaf disease is challenging due to variations in crop species, disease symptoms, and environmental conditions. Existing methods for detecting crop species and diseases are limited, as they rely on models trained and evaluated solely on plant leaf images from specific regions. This study proposes a novel approach utilizing a Weighted Majority Voting strategy combined with multiple color space models to diagnose potato leaf diseases. The initial detection stage employs deep learning models such as AlexNet, ResNet50, and MobileNet. Our approach aims to identify Early Blight, Late Blight, and healthy potato leaf images. The proposed detection model is trained and tested on two datasets: the PlantVillage dataset and the PLD dataset. The novel fusion and ensemble method achieves an accuracy of 98.38% on the PlantVillage dataset and 98.27% on the PLD dataset with the MobileNet model. An ensemble of all models and color spaces using Weighted Majority Voting significantly increases classification accuracies to 98.61% on the PlantVillage dataset and 97.78% on the PLD dataset. Our contributions include a novel fusion method of color spaces and deep learning models, improving disease detection accuracy beyond the state-of-the-art.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":"195 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potato leaf disease classification using fusion of multiple color spaces with weighted majority voting on deep learning architectures\",\"authors\":\"Samaneh Sarfarazi, Hossein Ghaderi Zefrehi, Önsen Toygar\",\"doi\":\"10.1007/s11042-024-20173-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Early identification of potato leaf disease is challenging due to variations in crop species, disease symptoms, and environmental conditions. Existing methods for detecting crop species and diseases are limited, as they rely on models trained and evaluated solely on plant leaf images from specific regions. This study proposes a novel approach utilizing a Weighted Majority Voting strategy combined with multiple color space models to diagnose potato leaf diseases. The initial detection stage employs deep learning models such as AlexNet, ResNet50, and MobileNet. Our approach aims to identify Early Blight, Late Blight, and healthy potato leaf images. The proposed detection model is trained and tested on two datasets: the PlantVillage dataset and the PLD dataset. The novel fusion and ensemble method achieves an accuracy of 98.38% on the PlantVillage dataset and 98.27% on the PLD dataset with the MobileNet model. An ensemble of all models and color spaces using Weighted Majority Voting significantly increases classification accuracies to 98.61% on the PlantVillage dataset and 97.78% on the PLD dataset. Our contributions include a novel fusion method of color spaces and deep learning models, improving disease detection accuracy beyond the state-of-the-art.</p>\",\"PeriodicalId\":18770,\"journal\":{\"name\":\"Multimedia Tools and Applications\",\"volume\":\"195 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimedia Tools and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11042-024-20173-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Tools and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11042-024-20173-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Potato leaf disease classification using fusion of multiple color spaces with weighted majority voting on deep learning architectures
Early identification of potato leaf disease is challenging due to variations in crop species, disease symptoms, and environmental conditions. Existing methods for detecting crop species and diseases are limited, as they rely on models trained and evaluated solely on plant leaf images from specific regions. This study proposes a novel approach utilizing a Weighted Majority Voting strategy combined with multiple color space models to diagnose potato leaf diseases. The initial detection stage employs deep learning models such as AlexNet, ResNet50, and MobileNet. Our approach aims to identify Early Blight, Late Blight, and healthy potato leaf images. The proposed detection model is trained and tested on two datasets: the PlantVillage dataset and the PLD dataset. The novel fusion and ensemble method achieves an accuracy of 98.38% on the PlantVillage dataset and 98.27% on the PLD dataset with the MobileNet model. An ensemble of all models and color spaces using Weighted Majority Voting significantly increases classification accuracies to 98.61% on the PlantVillage dataset and 97.78% on the PLD dataset. Our contributions include a novel fusion method of color spaces and deep learning models, improving disease detection accuracy beyond the state-of-the-art.
期刊介绍:
Multimedia Tools and Applications publishes original research articles on multimedia development and system support tools as well as case studies of multimedia applications. It also features experimental and survey articles. The journal is intended for academics, practitioners, scientists and engineers who are involved in multimedia system research, design and applications. All papers are peer reviewed.
Specific areas of interest include:
- Multimedia Tools:
- Multimedia Applications:
- Prototype multimedia systems and platforms