LMMCoDrive:利用大型多模式模型进行协同驾驶

Haichao Liu, Ruoyu Yao, Zhenmin Huang, Shaojie Shen, Jun Ma
{"title":"LMMCoDrive:利用大型多模式模型进行协同驾驶","authors":"Haichao Liu, Ruoyu Yao, Zhenmin Huang, Shaojie Shen, Jun Ma","doi":"arxiv-2409.11981","DOIUrl":null,"url":null,"abstract":"To address the intricate challenges of decentralized cooperative scheduling\nand motion planning in Autonomous Mobility-on-Demand (AMoD) systems, this paper\nintroduces LMMCoDrive, a novel cooperative driving framework that leverages a\nLarge Multimodal Model (LMM) to enhance traffic efficiency in dynamic urban\nenvironments. This framework seamlessly integrates scheduling and motion\nplanning processes to ensure the effective operation of Cooperative Autonomous\nVehicles (CAVs). The spatial relationship between CAVs and passenger requests\nis abstracted into a Bird's-Eye View (BEV) to fully exploit the potential of\nthe LMM. Besides, trajectories are cautiously refined for each CAV while\nensuring collision avoidance through safety constraints. A decentralized\noptimization strategy, facilitated by the Alternating Direction Method of\nMultipliers (ADMM) within the LMM framework, is proposed to drive the graph\nevolution of CAVs. Simulation results demonstrate the pivotal role and\nsignificant impact of LMM in optimizing CAV scheduling and enhancing\ndecentralized cooperative optimization process for each vehicle. This marks a\nsubstantial stride towards achieving practical, efficient, and safe AMoD\nsystems that are poised to revolutionize urban transportation. The code is\navailable at https://github.com/henryhcliu/LMMCoDrive.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LMMCoDrive: Cooperative Driving with Large Multimodal Model\",\"authors\":\"Haichao Liu, Ruoyu Yao, Zhenmin Huang, Shaojie Shen, Jun Ma\",\"doi\":\"arxiv-2409.11981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the intricate challenges of decentralized cooperative scheduling\\nand motion planning in Autonomous Mobility-on-Demand (AMoD) systems, this paper\\nintroduces LMMCoDrive, a novel cooperative driving framework that leverages a\\nLarge Multimodal Model (LMM) to enhance traffic efficiency in dynamic urban\\nenvironments. This framework seamlessly integrates scheduling and motion\\nplanning processes to ensure the effective operation of Cooperative Autonomous\\nVehicles (CAVs). The spatial relationship between CAVs and passenger requests\\nis abstracted into a Bird's-Eye View (BEV) to fully exploit the potential of\\nthe LMM. Besides, trajectories are cautiously refined for each CAV while\\nensuring collision avoidance through safety constraints. A decentralized\\noptimization strategy, facilitated by the Alternating Direction Method of\\nMultipliers (ADMM) within the LMM framework, is proposed to drive the graph\\nevolution of CAVs. Simulation results demonstrate the pivotal role and\\nsignificant impact of LMM in optimizing CAV scheduling and enhancing\\ndecentralized cooperative optimization process for each vehicle. This marks a\\nsubstantial stride towards achieving practical, efficient, and safe AMoD\\nsystems that are poised to revolutionize urban transportation. The code is\\navailable at https://github.com/henryhcliu/LMMCoDrive.\",\"PeriodicalId\":501031,\"journal\":{\"name\":\"arXiv - CS - Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决自主按需移动(AMoD)系统中分散式合作调度和运动规划的复杂挑战,本文介绍了一种新型合作驾驶框架 LMMCoDrive,该框架利用大型多式联运模型(LMM)来提高动态城市环境中的交通效率。该框架无缝集成了调度和运动规划流程,以确保合作式自动驾驶汽车(CAV)的有效运行。CAV 与乘客请求之间的空间关系被抽象为鸟瞰图(BEV),以充分发挥 LMM 的潜力。此外,在通过安全约束确保避免碰撞的同时,对每辆 CAV 的轨迹进行谨慎改进。在 LMM 框架内,提出了一种由交替方向乘法(ADMM)促进的分散优化策略,以推动 CAV 的图形演化。仿真结果表明了 LMM 在优化 CAV 调度和增强每辆车的分散式合作优化过程中的关键作用和重大影响。这标志着在实现实用、高效和安全的 AMoD 系统方面取得了重大进展,有望彻底改变城市交通。代码见 https://github.com/henryhcliu/LMMCoDrive。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LMMCoDrive: Cooperative Driving with Large Multimodal Model
To address the intricate challenges of decentralized cooperative scheduling and motion planning in Autonomous Mobility-on-Demand (AMoD) systems, this paper introduces LMMCoDrive, a novel cooperative driving framework that leverages a Large Multimodal Model (LMM) to enhance traffic efficiency in dynamic urban environments. This framework seamlessly integrates scheduling and motion planning processes to ensure the effective operation of Cooperative Autonomous Vehicles (CAVs). The spatial relationship between CAVs and passenger requests is abstracted into a Bird's-Eye View (BEV) to fully exploit the potential of the LMM. Besides, trajectories are cautiously refined for each CAV while ensuring collision avoidance through safety constraints. A decentralized optimization strategy, facilitated by the Alternating Direction Method of Multipliers (ADMM) within the LMM framework, is proposed to drive the graph evolution of CAVs. Simulation results demonstrate the pivotal role and significant impact of LMM in optimizing CAV scheduling and enhancing decentralized cooperative optimization process for each vehicle. This marks a substantial stride towards achieving practical, efficient, and safe AMoD systems that are poised to revolutionize urban transportation. The code is available at https://github.com/henryhcliu/LMMCoDrive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IMRL: Integrating Visual, Physical, Temporal, and Geometric Representations for Enhanced Food Acquisition Human-Robot Cooperative Piano Playing with Learning-Based Real-Time Music Accompaniment GauTOAO: Gaussian-based Task-Oriented Affordance of Objects Reinforcement Learning with Lie Group Orientations for Robotics Haptic-ACT: Bridging Human Intuition with Compliant Robotic Manipulation via Immersive VR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1