使用原力,机器人-- 基于事件重新规划的力感知 ProDMP

Paul Werner Lödige, Maximilian Xiling Li, Rudolf Lioutikov
{"title":"使用原力,机器人-- 基于事件重新规划的力感知 ProDMP","authors":"Paul Werner Lödige, Maximilian Xiling Li, Rudolf Lioutikov","doi":"arxiv-2409.11144","DOIUrl":null,"url":null,"abstract":"Movement Primitives (MPs) are a well-established method for representing and\ngenerating modular robot trajectories. This work presents FA-ProDMP, a new\napproach which introduces force awareness to Probabilistic Dynamic Movement\nPrimitives (ProDMP). FA-ProDMP adapts the trajectory during runtime to account\nfor measured and desired forces. It offers smooth trajectories and captures\nposition and force correlations over multiple trajectories, e.g. a set of human\ndemonstrations. FA-ProDMP supports multiple axes of force and is thus agnostic\nto cartesian or joint space control. This makes FA-ProDMP a valuable tool for\nlearning contact rich manipulation tasks such as polishing, cutting or\nindustrial assembly from demonstration. In order to reliably evaluate\nFA-ProDMP, this work additionally introduces a modular, 3D printed task suite\ncalled POEMPEL, inspired by the popular Lego Technic pins. POEMPEL mimics\nindustrial peg-in-hole assembly tasks with force requirements. It offers\nmultiple parameters of adjustment, such as position, orientation and plug\nstiffness level, thus varying the direction and amount of required forces. Our\nexperiments show that FA-ProDMP outperforms other MP formulations on the\nPOEMPEL setup and a electrical power plug insertion task, due to its replanning\ncapabilities based on the measured forces. These findings highlight how\nFA-ProDMP enhances the performance of robotic systems in contact-rich\nmanipulation tasks.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use the Force, Bot! -- Force-Aware ProDMP with Event-Based Replanning\",\"authors\":\"Paul Werner Lödige, Maximilian Xiling Li, Rudolf Lioutikov\",\"doi\":\"arxiv-2409.11144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Movement Primitives (MPs) are a well-established method for representing and\\ngenerating modular robot trajectories. This work presents FA-ProDMP, a new\\napproach which introduces force awareness to Probabilistic Dynamic Movement\\nPrimitives (ProDMP). FA-ProDMP adapts the trajectory during runtime to account\\nfor measured and desired forces. It offers smooth trajectories and captures\\nposition and force correlations over multiple trajectories, e.g. a set of human\\ndemonstrations. FA-ProDMP supports multiple axes of force and is thus agnostic\\nto cartesian or joint space control. This makes FA-ProDMP a valuable tool for\\nlearning contact rich manipulation tasks such as polishing, cutting or\\nindustrial assembly from demonstration. In order to reliably evaluate\\nFA-ProDMP, this work additionally introduces a modular, 3D printed task suite\\ncalled POEMPEL, inspired by the popular Lego Technic pins. POEMPEL mimics\\nindustrial peg-in-hole assembly tasks with force requirements. It offers\\nmultiple parameters of adjustment, such as position, orientation and plug\\nstiffness level, thus varying the direction and amount of required forces. Our\\nexperiments show that FA-ProDMP outperforms other MP formulations on the\\nPOEMPEL setup and a electrical power plug insertion task, due to its replanning\\ncapabilities based on the measured forces. These findings highlight how\\nFA-ProDMP enhances the performance of robotic systems in contact-rich\\nmanipulation tasks.\",\"PeriodicalId\":501031,\"journal\":{\"name\":\"arXiv - CS - Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

运动原型(MP)是表示和生成模块化机器人轨迹的一种行之有效的方法。本研究提出的 FA-ProDMP 是一种新方法,它将力感知引入了概率动态运动原语 (ProDMP)。FA-ProDMP 可在运行时调整轨迹,以考虑测量到的力和期望的力。它提供平滑轨迹,并捕捉多个轨迹(例如一组人体演示)上的位置和力相关性。FA-ProDMP 支持多轴受力,因此与笛卡尔或关节空间控制无关。这使得 FA-ProDMP 成为学习丰富的接触操作任务(如抛光、切割或工业装配)的重要工具。为了对 FA-ProDMP 进行可靠的评估,这项工作还引入了一种名为 POEMPEL 的模块化 3D 打印任务套装,其灵感来源于广受欢迎的乐高 Technic 销钉。POEMPEL 模拟了具有力要求的工业钉入孔装配任务。它提供多种调节参数,如位置、方向和插头刚度水平,从而改变所需力的方向和大小。最近的实验表明,FA-ProDMP在POEMPEL设置和电源插头插入任务上的表现优于其他MP公式,这得益于它根据测量力重新规划的能力。这些发现凸显了FA-ProDMP是如何提高机器人系统在接触力操纵任务中的性能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use the Force, Bot! -- Force-Aware ProDMP with Event-Based Replanning
Movement Primitives (MPs) are a well-established method for representing and generating modular robot trajectories. This work presents FA-ProDMP, a new approach which introduces force awareness to Probabilistic Dynamic Movement Primitives (ProDMP). FA-ProDMP adapts the trajectory during runtime to account for measured and desired forces. It offers smooth trajectories and captures position and force correlations over multiple trajectories, e.g. a set of human demonstrations. FA-ProDMP supports multiple axes of force and is thus agnostic to cartesian or joint space control. This makes FA-ProDMP a valuable tool for learning contact rich manipulation tasks such as polishing, cutting or industrial assembly from demonstration. In order to reliably evaluate FA-ProDMP, this work additionally introduces a modular, 3D printed task suite called POEMPEL, inspired by the popular Lego Technic pins. POEMPEL mimics industrial peg-in-hole assembly tasks with force requirements. It offers multiple parameters of adjustment, such as position, orientation and plug stiffness level, thus varying the direction and amount of required forces. Our experiments show that FA-ProDMP outperforms other MP formulations on the POEMPEL setup and a electrical power plug insertion task, due to its replanning capabilities based on the measured forces. These findings highlight how FA-ProDMP enhances the performance of robotic systems in contact-rich manipulation tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IMRL: Integrating Visual, Physical, Temporal, and Geometric Representations for Enhanced Food Acquisition Human-Robot Cooperative Piano Playing with Learning-Based Real-Time Music Accompaniment GauTOAO: Gaussian-based Task-Oriented Affordance of Objects Reinforcement Learning with Lie Group Orientations for Robotics Haptic-ACT: Bridging Human Intuition with Compliant Robotic Manipulation via Immersive VR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1