{"title":"使用生长在 330 μm Ge 基底面上的 940 nm VCSEL 传输 80 Gbps PAM-4 数据","authors":"Yun-Cheng Yang;Zeyu Wan;Chih-Chuan Chiu;I-Chi Liu;Guangrui Xia;Chao-Hsin Wu","doi":"10.1109/LED.2024.3462949","DOIUrl":null,"url":null,"abstract":"940 nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) on \n<inline-formula> <tex-math>$330~\\mu $ </tex-math></inline-formula>\n m thick Ge bulk substrates were fabricated and characterized, presenting a novel approach to VCSEL manufacturing. The wafer surfaces demonstrated high smoothness and flatness, with a peak-to-valley wafer distortion of \n<inline-formula> <tex-math>$50.3~\\mu $ </tex-math></inline-formula>\n m, a root mean square roughness (Rq) of 1.34 nm, and an average wafer bow-warp of \n<inline-formula> <tex-math>$3.77~\\mu $ </tex-math></inline-formula>\n m. The Fabry-Pérot dip precisely aligned with the target wavelength, while stopband center mapping exhibited excellent uniformity across the wafer, with a 1.937 nm (0.206%) standard deviation. At 300 K, the Ge-based VCSEL with a \n<inline-formula> <tex-math>$6~\\mu $ </tex-math></inline-formula>\n m oxide aperture achieved an optical peak power of 5.5 mW and a maximum modulation bandwidth of 19.8 GHz, with a roll-over current surpassing 16 mA. Furthermore, the device demonstrated successful data transmission at 53.125 Gbps and 80 Gbps using PAM-4 modulation, achieving transmitter and dispersion eye closure quaternary (TDECQ) penalties of 1.36 dB and 4.70 dB, respectively. These results underscore the potential of thin Ge substrates in advancing VCSEL technology for high-speed optical communication applications.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2070-2073"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"80 Gbps PAM-4 Data Transmission With 940 nm VCSELs Grown on a 330 μm Ge Substrate\",\"authors\":\"Yun-Cheng Yang;Zeyu Wan;Chih-Chuan Chiu;I-Chi Liu;Guangrui Xia;Chao-Hsin Wu\",\"doi\":\"10.1109/LED.2024.3462949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"940 nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) on \\n<inline-formula> <tex-math>$330~\\\\mu $ </tex-math></inline-formula>\\n m thick Ge bulk substrates were fabricated and characterized, presenting a novel approach to VCSEL manufacturing. The wafer surfaces demonstrated high smoothness and flatness, with a peak-to-valley wafer distortion of \\n<inline-formula> <tex-math>$50.3~\\\\mu $ </tex-math></inline-formula>\\n m, a root mean square roughness (Rq) of 1.34 nm, and an average wafer bow-warp of \\n<inline-formula> <tex-math>$3.77~\\\\mu $ </tex-math></inline-formula>\\n m. The Fabry-Pérot dip precisely aligned with the target wavelength, while stopband center mapping exhibited excellent uniformity across the wafer, with a 1.937 nm (0.206%) standard deviation. At 300 K, the Ge-based VCSEL with a \\n<inline-formula> <tex-math>$6~\\\\mu $ </tex-math></inline-formula>\\n m oxide aperture achieved an optical peak power of 5.5 mW and a maximum modulation bandwidth of 19.8 GHz, with a roll-over current surpassing 16 mA. Furthermore, the device demonstrated successful data transmission at 53.125 Gbps and 80 Gbps using PAM-4 modulation, achieving transmitter and dispersion eye closure quaternary (TDECQ) penalties of 1.36 dB and 4.70 dB, respectively. These results underscore the potential of thin Ge substrates in advancing VCSEL technology for high-speed optical communication applications.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"45 11\",\"pages\":\"2070-2073\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10683733/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10683733/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
在厚度为 330~\mu $ m 的块状 Ge 基底上制造了 940 nm 氧化物约束垂直腔面发射激光器 (VCSEL),并对其进行了表征,为 VCSEL 制造提供了一种新方法。晶圆表面表现出很高的光滑度和平整度,峰谷晶圆畸变为 50.3 美元,均方根粗糙度 (Rq) 为 1.34 nm,平均晶圆弓形翘曲度为 3.77 美元。法布里-佩罗倾角与目标波长精确对齐,而整个晶圆的止带中心映射表现出极佳的均匀性,标准偏差为 1.937 nm (0.206%)。在 300 K 时,具有 6~\mu $ m 氧化物孔径的 Ge 基 VCSEL 达到了 5.5 mW 的光峰值功率和 19.8 GHz 的最大调制带宽,翻滚电流超过 16 mA。此外,该器件使用 PAM-4 调制,成功实现了 53.125 Gbps 和 80 Gbps 的数据传输,发射器和色散眼闭合四次方(TDECQ)惩罚分别为 1.36 dB 和 4.70 dB。这些结果凸显了薄 Ge 衬底在推动 VCSEL 技术用于高速光通信应用方面的潜力。
80 Gbps PAM-4 Data Transmission With 940 nm VCSELs Grown on a 330 μm Ge Substrate
940 nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) on
$330~\mu $
m thick Ge bulk substrates were fabricated and characterized, presenting a novel approach to VCSEL manufacturing. The wafer surfaces demonstrated high smoothness and flatness, with a peak-to-valley wafer distortion of
$50.3~\mu $
m, a root mean square roughness (Rq) of 1.34 nm, and an average wafer bow-warp of
$3.77~\mu $
m. The Fabry-Pérot dip precisely aligned with the target wavelength, while stopband center mapping exhibited excellent uniformity across the wafer, with a 1.937 nm (0.206%) standard deviation. At 300 K, the Ge-based VCSEL with a
$6~\mu $
m oxide aperture achieved an optical peak power of 5.5 mW and a maximum modulation bandwidth of 19.8 GHz, with a roll-over current surpassing 16 mA. Furthermore, the device demonstrated successful data transmission at 53.125 Gbps and 80 Gbps using PAM-4 modulation, achieving transmitter and dispersion eye closure quaternary (TDECQ) penalties of 1.36 dB and 4.70 dB, respectively. These results underscore the potential of thin Ge substrates in advancing VCSEL technology for high-speed optical communication applications.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.