使用生长在 330 μm Ge 基底面上的 940 nm VCSEL 传输 80 Gbps PAM-4 数据

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Electron Device Letters Pub Date : 2024-09-18 DOI:10.1109/LED.2024.3462949
Yun-Cheng Yang;Zeyu Wan;Chih-Chuan Chiu;I-Chi Liu;Guangrui Xia;Chao-Hsin Wu
{"title":"使用生长在 330 μm Ge 基底面上的 940 nm VCSEL 传输 80 Gbps PAM-4 数据","authors":"Yun-Cheng Yang;Zeyu Wan;Chih-Chuan Chiu;I-Chi Liu;Guangrui Xia;Chao-Hsin Wu","doi":"10.1109/LED.2024.3462949","DOIUrl":null,"url":null,"abstract":"940 nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) on \n<inline-formula> <tex-math>$330~\\mu $ </tex-math></inline-formula>\n m thick Ge bulk substrates were fabricated and characterized, presenting a novel approach to VCSEL manufacturing. The wafer surfaces demonstrated high smoothness and flatness, with a peak-to-valley wafer distortion of \n<inline-formula> <tex-math>$50.3~\\mu $ </tex-math></inline-formula>\n m, a root mean square roughness (Rq) of 1.34 nm, and an average wafer bow-warp of \n<inline-formula> <tex-math>$3.77~\\mu $ </tex-math></inline-formula>\n m. The Fabry-Pérot dip precisely aligned with the target wavelength, while stopband center mapping exhibited excellent uniformity across the wafer, with a 1.937 nm (0.206%) standard deviation. At 300 K, the Ge-based VCSEL with a \n<inline-formula> <tex-math>$6~\\mu $ </tex-math></inline-formula>\n m oxide aperture achieved an optical peak power of 5.5 mW and a maximum modulation bandwidth of 19.8 GHz, with a roll-over current surpassing 16 mA. Furthermore, the device demonstrated successful data transmission at 53.125 Gbps and 80 Gbps using PAM-4 modulation, achieving transmitter and dispersion eye closure quaternary (TDECQ) penalties of 1.36 dB and 4.70 dB, respectively. These results underscore the potential of thin Ge substrates in advancing VCSEL technology for high-speed optical communication applications.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2070-2073"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"80 Gbps PAM-4 Data Transmission With 940 nm VCSELs Grown on a 330 μm Ge Substrate\",\"authors\":\"Yun-Cheng Yang;Zeyu Wan;Chih-Chuan Chiu;I-Chi Liu;Guangrui Xia;Chao-Hsin Wu\",\"doi\":\"10.1109/LED.2024.3462949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"940 nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) on \\n<inline-formula> <tex-math>$330~\\\\mu $ </tex-math></inline-formula>\\n m thick Ge bulk substrates were fabricated and characterized, presenting a novel approach to VCSEL manufacturing. The wafer surfaces demonstrated high smoothness and flatness, with a peak-to-valley wafer distortion of \\n<inline-formula> <tex-math>$50.3~\\\\mu $ </tex-math></inline-formula>\\n m, a root mean square roughness (Rq) of 1.34 nm, and an average wafer bow-warp of \\n<inline-formula> <tex-math>$3.77~\\\\mu $ </tex-math></inline-formula>\\n m. The Fabry-Pérot dip precisely aligned with the target wavelength, while stopband center mapping exhibited excellent uniformity across the wafer, with a 1.937 nm (0.206%) standard deviation. At 300 K, the Ge-based VCSEL with a \\n<inline-formula> <tex-math>$6~\\\\mu $ </tex-math></inline-formula>\\n m oxide aperture achieved an optical peak power of 5.5 mW and a maximum modulation bandwidth of 19.8 GHz, with a roll-over current surpassing 16 mA. Furthermore, the device demonstrated successful data transmission at 53.125 Gbps and 80 Gbps using PAM-4 modulation, achieving transmitter and dispersion eye closure quaternary (TDECQ) penalties of 1.36 dB and 4.70 dB, respectively. These results underscore the potential of thin Ge substrates in advancing VCSEL technology for high-speed optical communication applications.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"45 11\",\"pages\":\"2070-2073\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10683733/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10683733/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在厚度为 330~\mu $ m 的块状 Ge 基底上制造了 940 nm 氧化物约束垂直腔面发射激光器 (VCSEL),并对其进行了表征,为 VCSEL 制造提供了一种新方法。晶圆表面表现出很高的光滑度和平整度,峰谷晶圆畸变为 50.3 美元,均方根粗糙度 (Rq) 为 1.34 nm,平均晶圆弓形翘曲度为 3.77 美元。法布里-佩罗倾角与目标波长精确对齐,而整个晶圆的止带中心映射表现出极佳的均匀性,标准偏差为 1.937 nm (0.206%)。在 300 K 时,具有 6~\mu $ m 氧化物孔径的 Ge 基 VCSEL 达到了 5.5 mW 的光峰值功率和 19.8 GHz 的最大调制带宽,翻滚电流超过 16 mA。此外,该器件使用 PAM-4 调制,成功实现了 53.125 Gbps 和 80 Gbps 的数据传输,发射器和色散眼闭合四次方(TDECQ)惩罚分别为 1.36 dB 和 4.70 dB。这些结果凸显了薄 Ge 衬底在推动 VCSEL 技术用于高速光通信应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
80 Gbps PAM-4 Data Transmission With 940 nm VCSELs Grown on a 330 μm Ge Substrate
940 nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) on $330~\mu $ m thick Ge bulk substrates were fabricated and characterized, presenting a novel approach to VCSEL manufacturing. The wafer surfaces demonstrated high smoothness and flatness, with a peak-to-valley wafer distortion of $50.3~\mu $ m, a root mean square roughness (Rq) of 1.34 nm, and an average wafer bow-warp of $3.77~\mu $ m. The Fabry-Pérot dip precisely aligned with the target wavelength, while stopband center mapping exhibited excellent uniformity across the wafer, with a 1.937 nm (0.206%) standard deviation. At 300 K, the Ge-based VCSEL with a $6~\mu $ m oxide aperture achieved an optical peak power of 5.5 mW and a maximum modulation bandwidth of 19.8 GHz, with a roll-over current surpassing 16 mA. Furthermore, the device demonstrated successful data transmission at 53.125 Gbps and 80 Gbps using PAM-4 modulation, achieving transmitter and dispersion eye closure quaternary (TDECQ) penalties of 1.36 dB and 4.70 dB, respectively. These results underscore the potential of thin Ge substrates in advancing VCSEL technology for high-speed optical communication applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
期刊最新文献
Table of Contents Front Cover IEEE Electron Device Letters Publication Information IEEE Electron Device Letters Information for Authors Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1