Yunfeng Li, Yajie Qiu, Yan Shi, Guangjun Jiang, Pucun Bai
{"title":"多层激光熔覆镍基复合涂层的微观结构、耐磨性和耐腐蚀性","authors":"Yunfeng Li, Yajie Qiu, Yan Shi, Guangjun Jiang, Pucun Bai","doi":"10.1016/j.mtcomm.2024.110369","DOIUrl":null,"url":null,"abstract":"Using laser cladding technology to prepare coatings on the gear ring of the main wheel made of ZG42CrMoA, the composite coatings consisting of γ-Ni, MC, NiB, WC, and WC. As the amount of WC nanoparticles increased, a \"pinning\" effect on dislocations hindered dislocation movement during wear, Comparative analysis showed a reduction in wear rate by 76.94 % and 72.80 % compared to the untreated substrate and high-frequency quenched substrate, respectively. Further, finite-element analysis indicated maximum compressive stress values of 274.37 MPa and 262.20 MPa during the impact and friction phases, respectively. This was lower than the corresponding values of the high-frequency quenched layer, which were 288.63 MPa and 283.16 MPa. The corrosion current density of the composite coating reduced by 87.98 % and 92.71 % compared to the untreated substrate and the high-frequency quenched substrate, respectively. Additionally, the electrochemical impedance amplitude of the composite coating was 72,456 Ω, which was substantially higher than that of the high-frequency quenched substrate (1270 Ω) and the untreated substrate (1717 Ω) by 570.5 % and 422.0 %.","PeriodicalId":18477,"journal":{"name":"Materials Today Communications","volume":"2 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure, wear and corrosion resistance of Ni-based composite coating by multi-layer laser cladding\",\"authors\":\"Yunfeng Li, Yajie Qiu, Yan Shi, Guangjun Jiang, Pucun Bai\",\"doi\":\"10.1016/j.mtcomm.2024.110369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using laser cladding technology to prepare coatings on the gear ring of the main wheel made of ZG42CrMoA, the composite coatings consisting of γ-Ni, MC, NiB, WC, and WC. As the amount of WC nanoparticles increased, a \\\"pinning\\\" effect on dislocations hindered dislocation movement during wear, Comparative analysis showed a reduction in wear rate by 76.94 % and 72.80 % compared to the untreated substrate and high-frequency quenched substrate, respectively. Further, finite-element analysis indicated maximum compressive stress values of 274.37 MPa and 262.20 MPa during the impact and friction phases, respectively. This was lower than the corresponding values of the high-frequency quenched layer, which were 288.63 MPa and 283.16 MPa. The corrosion current density of the composite coating reduced by 87.98 % and 92.71 % compared to the untreated substrate and the high-frequency quenched substrate, respectively. Additionally, the electrochemical impedance amplitude of the composite coating was 72,456 Ω, which was substantially higher than that of the high-frequency quenched substrate (1270 Ω) and the untreated substrate (1717 Ω) by 570.5 % and 422.0 %.\",\"PeriodicalId\":18477,\"journal\":{\"name\":\"Materials Today Communications\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtcomm.2024.110369\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtcomm.2024.110369","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microstructure, wear and corrosion resistance of Ni-based composite coating by multi-layer laser cladding
Using laser cladding technology to prepare coatings on the gear ring of the main wheel made of ZG42CrMoA, the composite coatings consisting of γ-Ni, MC, NiB, WC, and WC. As the amount of WC nanoparticles increased, a "pinning" effect on dislocations hindered dislocation movement during wear, Comparative analysis showed a reduction in wear rate by 76.94 % and 72.80 % compared to the untreated substrate and high-frequency quenched substrate, respectively. Further, finite-element analysis indicated maximum compressive stress values of 274.37 MPa and 262.20 MPa during the impact and friction phases, respectively. This was lower than the corresponding values of the high-frequency quenched layer, which were 288.63 MPa and 283.16 MPa. The corrosion current density of the composite coating reduced by 87.98 % and 92.71 % compared to the untreated substrate and the high-frequency quenched substrate, respectively. Additionally, the electrochemical impedance amplitude of the composite coating was 72,456 Ω, which was substantially higher than that of the high-frequency quenched substrate (1270 Ω) and the untreated substrate (1717 Ω) by 570.5 % and 422.0 %.
期刊介绍:
Materials Today Communications is a primary research journal covering all areas of materials science. The journal offers the materials community an innovative, efficient and flexible route for the publication of original research which has not found the right home on first submission.