{"title":"准静态荷载下的双向分级蜂窝:实验和数值研究","authors":"Mohammad Faisal Ahmed, William Granville","doi":"10.1016/j.mtcomm.2024.110385","DOIUrl":null,"url":null,"abstract":"Density-graded cellular solids possess tailorable mechanical properties through variable localized densities, made possible with design freedom offered by additive manufacturing. In this paper, a novel design strategy is proposed to generate bidirectionally graded honeycombs where the gradient direction is both parallel and perpendicular to the loading direction. A gradient function is developed to design three density gradient honeycombs having three different thickness gradients. The graded honeycombs along with their uniform density regular honeycomb counterparts of similar relative density are manufactured using material extrusion process. In-plane compression tests are carried out to perform a comparative study of the honeycombs. Unlike the regular honeycombs, graded honeycombs show layer-by-layer deformation, in addition to cell-wise collapse in lateral direction. Graded honeycombs show better energy absorption characteristics in low and high energy compressions, and high strain regime. Also, graded honeycombs have similar or higher specific energy absorption, densification strain, mean crushing force, and peak crushing force. The compressive responses of the honeycombs are simulated with finite element analysis and the simulation results agree well with the experimental results. The results substantiate the significance of thickness gradient in controlling the density gradation, and effectively tailoring the load-bearing capacity, deformation behavior, and energy absorption characteristics of cellular structures.","PeriodicalId":18477,"journal":{"name":"Materials Today Communications","volume":"46 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bidirectionally graded honeycombs under quasi-static loading: Experimental and numerical study\",\"authors\":\"Mohammad Faisal Ahmed, William Granville\",\"doi\":\"10.1016/j.mtcomm.2024.110385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Density-graded cellular solids possess tailorable mechanical properties through variable localized densities, made possible with design freedom offered by additive manufacturing. In this paper, a novel design strategy is proposed to generate bidirectionally graded honeycombs where the gradient direction is both parallel and perpendicular to the loading direction. A gradient function is developed to design three density gradient honeycombs having three different thickness gradients. The graded honeycombs along with their uniform density regular honeycomb counterparts of similar relative density are manufactured using material extrusion process. In-plane compression tests are carried out to perform a comparative study of the honeycombs. Unlike the regular honeycombs, graded honeycombs show layer-by-layer deformation, in addition to cell-wise collapse in lateral direction. Graded honeycombs show better energy absorption characteristics in low and high energy compressions, and high strain regime. Also, graded honeycombs have similar or higher specific energy absorption, densification strain, mean crushing force, and peak crushing force. The compressive responses of the honeycombs are simulated with finite element analysis and the simulation results agree well with the experimental results. The results substantiate the significance of thickness gradient in controlling the density gradation, and effectively tailoring the load-bearing capacity, deformation behavior, and energy absorption characteristics of cellular structures.\",\"PeriodicalId\":18477,\"journal\":{\"name\":\"Materials Today Communications\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtcomm.2024.110385\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtcomm.2024.110385","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Bidirectionally graded honeycombs under quasi-static loading: Experimental and numerical study
Density-graded cellular solids possess tailorable mechanical properties through variable localized densities, made possible with design freedom offered by additive manufacturing. In this paper, a novel design strategy is proposed to generate bidirectionally graded honeycombs where the gradient direction is both parallel and perpendicular to the loading direction. A gradient function is developed to design three density gradient honeycombs having three different thickness gradients. The graded honeycombs along with their uniform density regular honeycomb counterparts of similar relative density are manufactured using material extrusion process. In-plane compression tests are carried out to perform a comparative study of the honeycombs. Unlike the regular honeycombs, graded honeycombs show layer-by-layer deformation, in addition to cell-wise collapse in lateral direction. Graded honeycombs show better energy absorption characteristics in low and high energy compressions, and high strain regime. Also, graded honeycombs have similar or higher specific energy absorption, densification strain, mean crushing force, and peak crushing force. The compressive responses of the honeycombs are simulated with finite element analysis and the simulation results agree well with the experimental results. The results substantiate the significance of thickness gradient in controlling the density gradation, and effectively tailoring the load-bearing capacity, deformation behavior, and energy absorption characteristics of cellular structures.
期刊介绍:
Materials Today Communications is a primary research journal covering all areas of materials science. The journal offers the materials community an innovative, efficient and flexible route for the publication of original research which has not found the right home on first submission.