钴铁氧体修饰的碱性溶液纳米纤维 Ti3C2Tx MXene 活化过氧单硫酸盐体系高效降解四环素:机理分析与途径

IF 3.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Communications Pub Date : 2024-09-12 DOI:10.1016/j.mtcomm.2024.110417
Suqing Qin, Jin Chen, Xiaofeng Yang, XinLe Wang, Huiqi Zheng, Yuzhao Ma, Yanjun Li
{"title":"钴铁氧体修饰的碱性溶液纳米纤维 Ti3C2Tx MXene 活化过氧单硫酸盐体系高效降解四环素:机理分析与途径","authors":"Suqing Qin, Jin Chen, Xiaofeng Yang, XinLe Wang, Huiqi Zheng, Yuzhao Ma, Yanjun Li","doi":"10.1016/j.mtcomm.2024.110417","DOIUrl":null,"url":null,"abstract":"Magnetic CoFeO nanoparticles have received considerable attention as an activator for peroxymonosulfate (PMS) in the degradation of tetracycline. However, it is still challenging to construct CoFeO composites with good dispersion and highly exposed reactive sites. Herein, the KOH fiber-functionalized MXene matrix decorated by cobalt ferrite nanoparticles (denoted as CoFeO@Alk-MXene) was developed by electrostatic self-assembly method. The layered fibrotic structure effectively disperses and fixes cobalt ferrite nanoparticles, increasing the exposure of reactive sites. The as-prepared CoFeO@Alk-MXene material exhibited rapid removal of 100% tetracycline hydrochloride (TC-HCl) within 10 minutes by activating PMS, leveraging the excellent conductivity of alkalized MXene and the efficient activation of transition metal atoms. The experimental and theoretical analysis revealed that the electron transfer process of Ti/Ti, Co/Co and Fe/Fe, as well as the free radical and non-free radical attack behaviors produced by the adsorption of PMS by the composite, are the primary mechanisms for achieving rapid removal of pollutants. A comprehensive degradation mechanism and potential pathways were proposed based on these findings. Overall, CoFeO@Alk-MXene/PMS emerges as a promising catalytic system for TC removal.","PeriodicalId":18477,"journal":{"name":"Materials Today Communications","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient degradation of tetracycline by cobalt ferrite modified alkaline solution nanofibrous Ti3C2Tx MXene activated peroxymonosulfate system: Mechanism analysis and pathway\",\"authors\":\"Suqing Qin, Jin Chen, Xiaofeng Yang, XinLe Wang, Huiqi Zheng, Yuzhao Ma, Yanjun Li\",\"doi\":\"10.1016/j.mtcomm.2024.110417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic CoFeO nanoparticles have received considerable attention as an activator for peroxymonosulfate (PMS) in the degradation of tetracycline. However, it is still challenging to construct CoFeO composites with good dispersion and highly exposed reactive sites. Herein, the KOH fiber-functionalized MXene matrix decorated by cobalt ferrite nanoparticles (denoted as CoFeO@Alk-MXene) was developed by electrostatic self-assembly method. The layered fibrotic structure effectively disperses and fixes cobalt ferrite nanoparticles, increasing the exposure of reactive sites. The as-prepared CoFeO@Alk-MXene material exhibited rapid removal of 100% tetracycline hydrochloride (TC-HCl) within 10 minutes by activating PMS, leveraging the excellent conductivity of alkalized MXene and the efficient activation of transition metal atoms. The experimental and theoretical analysis revealed that the electron transfer process of Ti/Ti, Co/Co and Fe/Fe, as well as the free radical and non-free radical attack behaviors produced by the adsorption of PMS by the composite, are the primary mechanisms for achieving rapid removal of pollutants. A comprehensive degradation mechanism and potential pathways were proposed based on these findings. Overall, CoFeO@Alk-MXene/PMS emerges as a promising catalytic system for TC removal.\",\"PeriodicalId\":18477,\"journal\":{\"name\":\"Materials Today Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtcomm.2024.110417\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtcomm.2024.110417","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在降解四环素的过程中,磁性 CoFeO 纳米粒子作为过一硫酸盐(PMS)的活化剂受到了广泛关注。然而,如何构建具有良好分散性和高暴露活性位点的 CoFeO 复合材料仍是一项挑战。在此,我们采用静电自组装方法开发出了由钴铁氧体纳米颗粒装饰的 KOH 纤维功能化 MXene 基质(称为 CoFeO@Alk-MXene)。层状纤维结构有效地分散和固定了钴铁氧体纳米颗粒,增加了反应位点的暴露。利用碱化 MXene 的优异导电性和过渡金属原子的高效活化,制备的 CoFeO@Alk-MXene 材料通过活化 PMS 在 10 分钟内快速去除 100% 的盐酸四环素(TC-HCl)。实验和理论分析表明,Ti/Ti、Co/Co 和 Fe/Fe 的电子传递过程以及复合材料吸附 PMS 后产生的自由基和非自由基攻击行为是实现快速去除污染物的主要机制。基于这些发现,提出了一种全面的降解机制和潜在途径。总之,CoFeO@Alk-MXene/PMS 是一种很有前景的去除三氯甲烷的催化体系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient degradation of tetracycline by cobalt ferrite modified alkaline solution nanofibrous Ti3C2Tx MXene activated peroxymonosulfate system: Mechanism analysis and pathway
Magnetic CoFeO nanoparticles have received considerable attention as an activator for peroxymonosulfate (PMS) in the degradation of tetracycline. However, it is still challenging to construct CoFeO composites with good dispersion and highly exposed reactive sites. Herein, the KOH fiber-functionalized MXene matrix decorated by cobalt ferrite nanoparticles (denoted as CoFeO@Alk-MXene) was developed by electrostatic self-assembly method. The layered fibrotic structure effectively disperses and fixes cobalt ferrite nanoparticles, increasing the exposure of reactive sites. The as-prepared CoFeO@Alk-MXene material exhibited rapid removal of 100% tetracycline hydrochloride (TC-HCl) within 10 minutes by activating PMS, leveraging the excellent conductivity of alkalized MXene and the efficient activation of transition metal atoms. The experimental and theoretical analysis revealed that the electron transfer process of Ti/Ti, Co/Co and Fe/Fe, as well as the free radical and non-free radical attack behaviors produced by the adsorption of PMS by the composite, are the primary mechanisms for achieving rapid removal of pollutants. A comprehensive degradation mechanism and potential pathways were proposed based on these findings. Overall, CoFeO@Alk-MXene/PMS emerges as a promising catalytic system for TC removal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Communications
Materials Today Communications Materials Science-General Materials Science
CiteScore
5.20
自引率
5.30%
发文量
1783
审稿时长
51 days
期刊介绍: Materials Today Communications is a primary research journal covering all areas of materials science. The journal offers the materials community an innovative, efficient and flexible route for the publication of original research which has not found the right home on first submission.
期刊最新文献
Influences of fiber orientation and process parameters on diamond wire sawn surface characteristics of 2.5D Cf/SiC composites Study on microstructure and corrosion behavior of T-joints of 2A12 and 2A97 aluminum alloys by FSW Efficient degradation of tetracycline by cobalt ferrite modified alkaline solution nanofibrous Ti3C2Tx MXene activated peroxymonosulfate system: Mechanism analysis and pathway Insights into effects of Fe doping on phase stability, martensitic transformation, and magnetic properties in Ni-Mn-Ti-Fe all-d-metal Heusler alloys Evolution of microstructure and mechanical properties of electroplated nanocrystalline Ni–Co coating during heating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1