预测对自动驾驶汽车的信任:用机器学习模拟年轻人的社会心理特征、风险收益态度和驾驶因素

Robert Kaufman, Emi Lee, Manas Satish Bedmutha, David Kirsh, Nadir Weibel
{"title":"预测对自动驾驶汽车的信任:用机器学习模拟年轻人的社会心理特征、风险收益态度和驾驶因素","authors":"Robert Kaufman, Emi Lee, Manas Satish Bedmutha, David Kirsh, Nadir Weibel","doi":"arxiv-2409.08980","DOIUrl":null,"url":null,"abstract":"Low trust remains a significant barrier to Autonomous Vehicle (AV) adoption.\nTo design trustworthy AVs, we need to better understand the individual traits,\nattitudes, and experiences that impact people's trust judgements. We use\nmachine learning to understand the most important factors that contribute to\nyoung adult trust based on a comprehensive set of personal factors gathered via\nsurvey (n = 1457). Factors ranged from psychosocial and cognitive attributes to\ndriving style, experiences, and perceived AV risks and benefits. Using the\nexplainable AI technique SHAP, we found that perceptions of AV risks and\nbenefits, attitudes toward feasibility and usability, institutional trust,\nprior experience, and a person's mental model are the most important\npredictors. Surprisingly, psychosocial and many technology- and\ndriving-specific factors were not strong predictors. Results highlight the\nimportance of individual differences for designing trustworthy AVs for diverse\ngroups and lead to key implications for future design and research.","PeriodicalId":501541,"journal":{"name":"arXiv - CS - Human-Computer Interaction","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Trust In Autonomous Vehicles: Modeling Young Adult Psychosocial Traits, Risk-Benefit Attitudes, And Driving Factors With Machine Learning\",\"authors\":\"Robert Kaufman, Emi Lee, Manas Satish Bedmutha, David Kirsh, Nadir Weibel\",\"doi\":\"arxiv-2409.08980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low trust remains a significant barrier to Autonomous Vehicle (AV) adoption.\\nTo design trustworthy AVs, we need to better understand the individual traits,\\nattitudes, and experiences that impact people's trust judgements. We use\\nmachine learning to understand the most important factors that contribute to\\nyoung adult trust based on a comprehensive set of personal factors gathered via\\nsurvey (n = 1457). Factors ranged from psychosocial and cognitive attributes to\\ndriving style, experiences, and perceived AV risks and benefits. Using the\\nexplainable AI technique SHAP, we found that perceptions of AV risks and\\nbenefits, attitudes toward feasibility and usability, institutional trust,\\nprior experience, and a person's mental model are the most important\\npredictors. Surprisingly, psychosocial and many technology- and\\ndriving-specific factors were not strong predictors. Results highlight the\\nimportance of individual differences for designing trustworthy AVs for diverse\\ngroups and lead to key implications for future design and research.\",\"PeriodicalId\":501541,\"journal\":{\"name\":\"arXiv - CS - Human-Computer Interaction\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Human-Computer Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

要设计出值得信赖的自动驾驶汽车,我们需要更好地了解影响人们信任判断的个人特征、态度和经历。我们利用机器学习,根据调查(n = 1457)收集到的一整套个人因素,来了解促成年轻人信任的最重要因素。这些因素包括社会心理和认知属性、驾驶风格、经验以及感知到的 AV 风险和益处。利用可解释的人工智能技术 SHAP,我们发现对 AV 风险和益处的感知、对可行性和可用性的态度、机构信任、先前的经验以及个人的心理模型是最重要的预测因素。令人惊讶的是,社会心理因素以及许多技术和驾驶方面的具体因素并不是强有力的预测因素。研究结果凸显了个体差异对于为不同群体设计值得信赖的自动驾驶汽车的重要性,并对未来的设计和研究产生了重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Trust In Autonomous Vehicles: Modeling Young Adult Psychosocial Traits, Risk-Benefit Attitudes, And Driving Factors With Machine Learning
Low trust remains a significant barrier to Autonomous Vehicle (AV) adoption. To design trustworthy AVs, we need to better understand the individual traits, attitudes, and experiences that impact people's trust judgements. We use machine learning to understand the most important factors that contribute to young adult trust based on a comprehensive set of personal factors gathered via survey (n = 1457). Factors ranged from psychosocial and cognitive attributes to driving style, experiences, and perceived AV risks and benefits. Using the explainable AI technique SHAP, we found that perceptions of AV risks and benefits, attitudes toward feasibility and usability, institutional trust, prior experience, and a person's mental model are the most important predictors. Surprisingly, psychosocial and many technology- and driving-specific factors were not strong predictors. Results highlight the importance of individual differences for designing trustworthy AVs for diverse groups and lead to key implications for future design and research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Equimetrics -- Applying HAR principles to equestrian activities AI paintings vs. Human Paintings? Deciphering Public Interactions and Perceptions towards AI-Generated Paintings on TikTok From Data Stories to Dialogues: A Randomised Controlled Trial of Generative AI Agents and Data Storytelling in Enhancing Data Visualisation Comprehension Exploring Gaze Pattern in Autistic Children: Clustering, Visualization, and Prediction Revealing the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1