{"title":"o-CLEAN:一种用于校正实验室外脑电图数据中眼球伪影的新型多阶段算法。","authors":"Vincenzo Ronca,Gianluca Di Flumeri,Andrea Giorgi,Alessia Vozzi,Rossella Capotorto,Daniele Germano,Nicolina Sciaraffa,Gianluca Borghini,Fabio Babiloni,Pietro Aricò","doi":"10.1088/1741-2552/ad7b78","DOIUrl":null,"url":null,"abstract":"In the context of Electroencephalographic (EEG) signal processing, artifacts generated by ocular movements, such as blinks, are significant confounding factors. These artifacts overwhelm informative EEG features and may occur too frequently to simply remove affected epochs without losing valuable data. Correcting these artifacts remains a challenge, particularly in out-of-lab and online applications using wearable EEG systems (i.e. with low number of EEG channels, without any additional channels to track EOG).\r\n\r\nOBJECTIVE\r\nthe main objective of the present work consisted in validating a novel ocular blinks artefacts correction method, named o-CLEAN (multi-stage OCuLar artEfActs deNoising algorithm), suitable for online processing with minimal EEG channels.\r\n\r\nAPPROACH\r\nthe research was conducted considering one EEG dataset collected in highly controlled environment, and a second one collected in real environment. The analysis was performed by comparing the o-CLEAN method with previously validated state-of-art techniques, and by evaluating its performance along two dimensions: a) the ocular artefacts correction performance (IN-Blink), and b) the EEG signal preservation when the method was applied without any ocular artefacts occurrence (OUT-Blink).\r\n\r\nMAIN RESULTS\r\nresults highlighted that i) o-CLEAN algorithm resulted to be, at least, significantly reliable as the most validated approaches identified in scientific literature in terms of ocular blink artifacts correction, ii) o-CLEAN showed the best performances in terms of EEG signal preservation especially with a low number of EEG channels.\r\n\r\nSIGNIFICANCE\r\nthe testing and validation of the o-CLEAN addresses a relevant open issue in bioengineering EEG processing, especially within out-of-the-lab application. In fact, the method offers an effective solution for correcting ocular artifacts in EEG signals with a low number of available channels, for online processing, and without any specific template of the EOG. It was demonstrated to be particularly effective for EEG data gathered in real environments using wearable systems, a rapidly expanding area within applied neuroscience.","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":"106 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"o-CLEAN: a novel multi-stage algorithm for the ocular artifacts' correction from EEG data in out-of-the-lab applications.\",\"authors\":\"Vincenzo Ronca,Gianluca Di Flumeri,Andrea Giorgi,Alessia Vozzi,Rossella Capotorto,Daniele Germano,Nicolina Sciaraffa,Gianluca Borghini,Fabio Babiloni,Pietro Aricò\",\"doi\":\"10.1088/1741-2552/ad7b78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of Electroencephalographic (EEG) signal processing, artifacts generated by ocular movements, such as blinks, are significant confounding factors. These artifacts overwhelm informative EEG features and may occur too frequently to simply remove affected epochs without losing valuable data. Correcting these artifacts remains a challenge, particularly in out-of-lab and online applications using wearable EEG systems (i.e. with low number of EEG channels, without any additional channels to track EOG).\\r\\n\\r\\nOBJECTIVE\\r\\nthe main objective of the present work consisted in validating a novel ocular blinks artefacts correction method, named o-CLEAN (multi-stage OCuLar artEfActs deNoising algorithm), suitable for online processing with minimal EEG channels.\\r\\n\\r\\nAPPROACH\\r\\nthe research was conducted considering one EEG dataset collected in highly controlled environment, and a second one collected in real environment. The analysis was performed by comparing the o-CLEAN method with previously validated state-of-art techniques, and by evaluating its performance along two dimensions: a) the ocular artefacts correction performance (IN-Blink), and b) the EEG signal preservation when the method was applied without any ocular artefacts occurrence (OUT-Blink).\\r\\n\\r\\nMAIN RESULTS\\r\\nresults highlighted that i) o-CLEAN algorithm resulted to be, at least, significantly reliable as the most validated approaches identified in scientific literature in terms of ocular blink artifacts correction, ii) o-CLEAN showed the best performances in terms of EEG signal preservation especially with a low number of EEG channels.\\r\\n\\r\\nSIGNIFICANCE\\r\\nthe testing and validation of the o-CLEAN addresses a relevant open issue in bioengineering EEG processing, especially within out-of-the-lab application. In fact, the method offers an effective solution for correcting ocular artifacts in EEG signals with a low number of available channels, for online processing, and without any specific template of the EOG. It was demonstrated to be particularly effective for EEG data gathered in real environments using wearable systems, a rapidly expanding area within applied neuroscience.\",\"PeriodicalId\":16753,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/ad7b78\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1741-2552/ad7b78","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
o-CLEAN: a novel multi-stage algorithm for the ocular artifacts' correction from EEG data in out-of-the-lab applications.
In the context of Electroencephalographic (EEG) signal processing, artifacts generated by ocular movements, such as blinks, are significant confounding factors. These artifacts overwhelm informative EEG features and may occur too frequently to simply remove affected epochs without losing valuable data. Correcting these artifacts remains a challenge, particularly in out-of-lab and online applications using wearable EEG systems (i.e. with low number of EEG channels, without any additional channels to track EOG).
OBJECTIVE
the main objective of the present work consisted in validating a novel ocular blinks artefacts correction method, named o-CLEAN (multi-stage OCuLar artEfActs deNoising algorithm), suitable for online processing with minimal EEG channels.
APPROACH
the research was conducted considering one EEG dataset collected in highly controlled environment, and a second one collected in real environment. The analysis was performed by comparing the o-CLEAN method with previously validated state-of-art techniques, and by evaluating its performance along two dimensions: a) the ocular artefacts correction performance (IN-Blink), and b) the EEG signal preservation when the method was applied without any ocular artefacts occurrence (OUT-Blink).
MAIN RESULTS
results highlighted that i) o-CLEAN algorithm resulted to be, at least, significantly reliable as the most validated approaches identified in scientific literature in terms of ocular blink artifacts correction, ii) o-CLEAN showed the best performances in terms of EEG signal preservation especially with a low number of EEG channels.
SIGNIFICANCE
the testing and validation of the o-CLEAN addresses a relevant open issue in bioengineering EEG processing, especially within out-of-the-lab application. In fact, the method offers an effective solution for correcting ocular artifacts in EEG signals with a low number of available channels, for online processing, and without any specific template of the EOG. It was demonstrated to be particularly effective for EEG data gathered in real environments using wearable systems, a rapidly expanding area within applied neuroscience.
期刊介绍:
The goal of Journal of Neural Engineering (JNE) is to act as a forum for the interdisciplinary field of neural engineering where neuroscientists, neurobiologists and engineers can publish their work in one periodical that bridges the gap between neuroscience and engineering. The journal publishes articles in the field of neural engineering at the molecular, cellular and systems levels.
The scope of the journal encompasses experimental, computational, theoretical, clinical and applied aspects of: Innovative neurotechnology; Brain-machine (computer) interface; Neural interfacing; Bioelectronic medicines; Neuromodulation; Neural prostheses; Neural control; Neuro-rehabilitation; Neurorobotics; Optical neural engineering; Neural circuits: artificial & biological; Neuromorphic engineering; Neural tissue regeneration; Neural signal processing; Theoretical and computational neuroscience; Systems neuroscience; Translational neuroscience; Neuroimaging.