{"title":"通过热处理调节激光粉末床熔融 Ti-6Al-4V 的机械和摩擦学特性","authors":"Yang Zheng, Ruize Xiong, Zihao Zhao, Guochun Ren, Cenya Zhao, Wei Liu, Libin Zang","doi":"10.1007/s11665-024-10104-6","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The effects of different heat treatments, including direct aging (DA), solid solution (T4) and solid solution + aging (T6), on the microstructure, mechanical and tribological properties of Ti-6Al-4V alloy prepared by laser powder bed fusion were studied. The As-built and DA-treated samples had refined acicular <i>α</i><sup>′</sup> martensite phase and <i>β</i> phase. The T4-treated sample had lamellar <i>α</i> phase and globular <i>α</i> phase, whereas the T6-treated sample had lamellar <i>α</i> phase and basketweave microstructure. The dislocation density was decreased after heat treatments. The samples exhibited lower strength but higher plasticity after heat treatments, which was a comprehensive reflection of the decomposition of <i>α</i><sup>′</sup> phase, the increase in <i>β</i> phase content, the coarsening of grains and the reduction of dislocation density. The wear resistance of the samples increased in the order of DA-treated sample < As-built sample < T6-treated sample < T4-treated sample, which was mainly related to the morphology and content of the <i>α</i>/<i>α</i><sup>′</sup> phases on their surfaces. A favorable comprehensive performance was found for the T4-treated sample: It possessed the highest microhardness (447.51 ± 18.6 HV), the moderate yield strength (791.68 ± 15.8 MPa) and ultimate tensile strength (887.25 ± 13.25 MPa), the largest elongation (15.24 ± 0.57%), the lowest wear rate (0.76 ± 0.03 × 10<sup>−3</sup> mm<sup>3</sup>/(N m)).</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"106 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation of Mechanical and Tribological Properties of Laser Powder Bed Fusion Ti-6Al-4V by Heat Treatments\",\"authors\":\"Yang Zheng, Ruize Xiong, Zihao Zhao, Guochun Ren, Cenya Zhao, Wei Liu, Libin Zang\",\"doi\":\"10.1007/s11665-024-10104-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The effects of different heat treatments, including direct aging (DA), solid solution (T4) and solid solution + aging (T6), on the microstructure, mechanical and tribological properties of Ti-6Al-4V alloy prepared by laser powder bed fusion were studied. The As-built and DA-treated samples had refined acicular <i>α</i><sup>′</sup> martensite phase and <i>β</i> phase. The T4-treated sample had lamellar <i>α</i> phase and globular <i>α</i> phase, whereas the T6-treated sample had lamellar <i>α</i> phase and basketweave microstructure. The dislocation density was decreased after heat treatments. The samples exhibited lower strength but higher plasticity after heat treatments, which was a comprehensive reflection of the decomposition of <i>α</i><sup>′</sup> phase, the increase in <i>β</i> phase content, the coarsening of grains and the reduction of dislocation density. The wear resistance of the samples increased in the order of DA-treated sample < As-built sample < T6-treated sample < T4-treated sample, which was mainly related to the morphology and content of the <i>α</i>/<i>α</i><sup>′</sup> phases on their surfaces. A favorable comprehensive performance was found for the T4-treated sample: It possessed the highest microhardness (447.51 ± 18.6 HV), the moderate yield strength (791.68 ± 15.8 MPa) and ultimate tensile strength (887.25 ± 13.25 MPa), the largest elongation (15.24 ± 0.57%), the lowest wear rate (0.76 ± 0.03 × 10<sup>−3</sup> mm<sup>3</sup>/(N m)).</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11665-024-10104-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-10104-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Regulation of Mechanical and Tribological Properties of Laser Powder Bed Fusion Ti-6Al-4V by Heat Treatments
Abstract
The effects of different heat treatments, including direct aging (DA), solid solution (T4) and solid solution + aging (T6), on the microstructure, mechanical and tribological properties of Ti-6Al-4V alloy prepared by laser powder bed fusion were studied. The As-built and DA-treated samples had refined acicular α′ martensite phase and β phase. The T4-treated sample had lamellar α phase and globular α phase, whereas the T6-treated sample had lamellar α phase and basketweave microstructure. The dislocation density was decreased after heat treatments. The samples exhibited lower strength but higher plasticity after heat treatments, which was a comprehensive reflection of the decomposition of α′ phase, the increase in β phase content, the coarsening of grains and the reduction of dislocation density. The wear resistance of the samples increased in the order of DA-treated sample < As-built sample < T6-treated sample < T4-treated sample, which was mainly related to the morphology and content of the α/α′ phases on their surfaces. A favorable comprehensive performance was found for the T4-treated sample: It possessed the highest microhardness (447.51 ± 18.6 HV), the moderate yield strength (791.68 ± 15.8 MPa) and ultimate tensile strength (887.25 ± 13.25 MPa), the largest elongation (15.24 ± 0.57%), the lowest wear rate (0.76 ± 0.03 × 10−3 mm3/(N m)).
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered