用于偏振无关 LCOS 的新型帧缓冲器像素电路和硅背板开发

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Photonics Journal Pub Date : 2024-09-17 DOI:10.1109/JPHOT.2024.3462889
Qirui Zhang;Isaac Zachmann;Lianhua Ji;Chongchang Mao
{"title":"用于偏振无关 LCOS 的新型帧缓冲器像素电路和硅背板开发","authors":"Qirui Zhang;Isaac Zachmann;Lianhua Ji;Chongchang Mao","doi":"10.1109/JPHOT.2024.3462889","DOIUrl":null,"url":null,"abstract":"This project aims to develop novel frame buffer pixel circuit-based silicon backplanes using 180 nm process technology for polarization-independent liquid crystal on silicon (PI-LCOS) phase modulators. Three unique pixel circuits, which exclusively utilize NMOS transistors, have been designed to minimize pixel size and improve production yield. Additionally, the \"Voltage Booster” (VBOOST) technique extends the dynamic voltage range, crucial for stable phase modulation and high grayscale. Efforts are also underway to enhance stability against voltage fluctuation by incorporating the auxiliary capacitor or refined active-driving pixel-electrode stage. The prototype silicon backplane features a 64 × 64-pixel matrix with column and row decoders for individual pixel addressing, facilitating optical testing. By employing a two-stage analog dynamic random-access memory (DRAM), the pixel circuit supports sequential data loading row by row throughout the array while simultaneously displaying previously loaded frame data. This ‘frame-at-a-time’ data refresh capability is vital for displaying images with full contrast, which is particularly advantageous for holographic and color sequential display applications. Simulation and experimental assessments on the silicon backplane chips demonstrate that these pixel circuits can support a high-resolution LCOS device with approximately 4.15 um x 4.15 um pixel pitch in the 180 nm process technology, a high voltage holding ratio exceeding 94%, and substantial grayscale modulation depth.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 5","pages":"1-9"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10682515","citationCount":"0","resultStr":"{\"title\":\"Novel Frame Buffer Pixel Circuits and Silicon Backplane Development for Polarization-Independent LCOS\",\"authors\":\"Qirui Zhang;Isaac Zachmann;Lianhua Ji;Chongchang Mao\",\"doi\":\"10.1109/JPHOT.2024.3462889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This project aims to develop novel frame buffer pixel circuit-based silicon backplanes using 180 nm process technology for polarization-independent liquid crystal on silicon (PI-LCOS) phase modulators. Three unique pixel circuits, which exclusively utilize NMOS transistors, have been designed to minimize pixel size and improve production yield. Additionally, the \\\"Voltage Booster” (VBOOST) technique extends the dynamic voltage range, crucial for stable phase modulation and high grayscale. Efforts are also underway to enhance stability against voltage fluctuation by incorporating the auxiliary capacitor or refined active-driving pixel-electrode stage. The prototype silicon backplane features a 64 × 64-pixel matrix with column and row decoders for individual pixel addressing, facilitating optical testing. By employing a two-stage analog dynamic random-access memory (DRAM), the pixel circuit supports sequential data loading row by row throughout the array while simultaneously displaying previously loaded frame data. This ‘frame-at-a-time’ data refresh capability is vital for displaying images with full contrast, which is particularly advantageous for holographic and color sequential display applications. Simulation and experimental assessments on the silicon backplane chips demonstrate that these pixel circuits can support a high-resolution LCOS device with approximately 4.15 um x 4.15 um pixel pitch in the 180 nm process technology, a high voltage holding ratio exceeding 94%, and substantial grayscale modulation depth.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"16 5\",\"pages\":\"1-9\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10682515\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10682515/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10682515/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本项目旨在利用 180 纳米工艺技术,为偏振无关型硅基液晶(PI-LCOS)相位调制器开发基于新型帧缓冲像素电路的硅背板。该项目设计了三种独特的像素电路,全部采用 NMOS 晶体管,以最大限度地减小像素尺寸并提高产量。此外,"电压增强"(VBOOST)技术扩大了动态电压范围,这对稳定的相位调制和高灰度至关重要。此外,还在努力通过加入辅助电容器或改进的主动驱动像素电极级来提高抗电压波动的稳定性。原型硅背板采用 64 × 64 像素矩阵,带有用于单个像素寻址的列和行解码器,便于进行光学测试。通过采用两级模拟动态随机存取存储器(DRAM),像素电路支持在整个阵列中逐行顺序加载数据,同时显示先前加载的帧数据。这种 "每次显示一帧 "的数据刷新能力对于显示具有充分对比度的图像至关重要,尤其适用于全息和彩色连续显示应用。在硅背板芯片上进行的仿真和实验评估表明,这些像素电路可支持 180 纳米工艺技术中约 4.15 微米 x 4.15 微米像素间距的高分辨率 LCOS 器件、超过 94% 的高电压保持率和相当大的灰度调制深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel Frame Buffer Pixel Circuits and Silicon Backplane Development for Polarization-Independent LCOS
This project aims to develop novel frame buffer pixel circuit-based silicon backplanes using 180 nm process technology for polarization-independent liquid crystal on silicon (PI-LCOS) phase modulators. Three unique pixel circuits, which exclusively utilize NMOS transistors, have been designed to minimize pixel size and improve production yield. Additionally, the "Voltage Booster” (VBOOST) technique extends the dynamic voltage range, crucial for stable phase modulation and high grayscale. Efforts are also underway to enhance stability against voltage fluctuation by incorporating the auxiliary capacitor or refined active-driving pixel-electrode stage. The prototype silicon backplane features a 64 × 64-pixel matrix with column and row decoders for individual pixel addressing, facilitating optical testing. By employing a two-stage analog dynamic random-access memory (DRAM), the pixel circuit supports sequential data loading row by row throughout the array while simultaneously displaying previously loaded frame data. This ‘frame-at-a-time’ data refresh capability is vital for displaying images with full contrast, which is particularly advantageous for holographic and color sequential display applications. Simulation and experimental assessments on the silicon backplane chips demonstrate that these pixel circuits can support a high-resolution LCOS device with approximately 4.15 um x 4.15 um pixel pitch in the 180 nm process technology, a high voltage holding ratio exceeding 94%, and substantial grayscale modulation depth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Photonics Journal
IEEE Photonics Journal ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
4.50
自引率
8.30%
发文量
489
审稿时长
1.4 months
期刊介绍: Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.
期刊最新文献
Investigation of Entire-Space Terahertz Emission From Gas Filament Excited by a Two-Color Field High Precision Piston Error Sensing of Segmented Telescope Based on Frequency Domain Filtering FSPI-R&D: Joint Reconstruction and Detection to Enhance the Object Detection Precision of Fourier Single-Pixel Imaging Integrated Physical Layer Key Distribution by Optical Steganography in Quantum Noise Stream Cipher System Defect Density-Dependent Dynamics of Double Absorber Layered Perovskite Solar Cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1