掺杂浓度对 ZnMnxSn(1-x)As2 自旋电子材料磁光特性影响的 TB-mBJ

IF 3.1 3区 物理与天体物理 Q2 Engineering Optik Pub Date : 2024-09-16 DOI:10.1016/j.ijleo.2024.172039
Anuj Kumar , Aman Kumar , Parveen Jain , Sandeep Kumar Pundir , Nempal Singh
{"title":"掺杂浓度对 ZnMnxSn(1-x)As2 自旋电子材料磁光特性影响的 TB-mBJ","authors":"Anuj Kumar ,&nbsp;Aman Kumar ,&nbsp;Parveen Jain ,&nbsp;Sandeep Kumar Pundir ,&nbsp;Nempal Singh","doi":"10.1016/j.ijleo.2024.172039","DOIUrl":null,"url":null,"abstract":"<div><p>An investigation for electronic, magnetic, and optical properties of Mn-doped <span><math><msub><mrow><mi>ZnSnAs</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> compound performed using advanced computational methods. Using spin-polarized density functional theory (DFT) calculations with local orbital linearized augmented plane wave (lo-LAPW) method and Tran–Blaha’s modified Becke–Johnson (TB-mBJ) functional, Mn-doped n-type chalcopyrite semiconductor <span><math><mrow><msub><mrow><mi>ZnMn</mi></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mi>Sn</mi></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>x</mi><mo>)</mo></mrow></mrow></msub><msub><mrow><mi>As</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, studied within varying Mn doping concentration range <span><math><mrow><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span>. Doping of Mn to Sn site in pure <span><math><msub><mrow><mi>ZnSnAs</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> creates a strong spin effect, which makes it useful spintronic materials. We observed with increase the Mn concentration in <span><math><msub><mrow><mi>ZnSnAs</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, energy bandgap changes while the magnetic strength of the unit cell remains unchanged, showing stability of system’s magnetism. Optical properties of the Mn doped <span><math><msub><mrow><mi>ZnSnAs</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> compounds analysed in term of dielectric function, absorption spectra, and refractive index. Optical properties show, compound is optically low active in the Infrared (IR) region and more active in visible and ultraviolet (UV) region. The electronic and optical properties of Mn-doped <span><math><msub><mrow><mi>ZnSnAs</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, offer potential technological advancements in semiconductor device design technology and engineering.</p></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"315 ","pages":"Article 172039"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TB-mBJ for doping concentration effects on magneto-optical properties in ZnMnxSn(1−x)As2 spintronics materials\",\"authors\":\"Anuj Kumar ,&nbsp;Aman Kumar ,&nbsp;Parveen Jain ,&nbsp;Sandeep Kumar Pundir ,&nbsp;Nempal Singh\",\"doi\":\"10.1016/j.ijleo.2024.172039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An investigation for electronic, magnetic, and optical properties of Mn-doped <span><math><msub><mrow><mi>ZnSnAs</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> compound performed using advanced computational methods. Using spin-polarized density functional theory (DFT) calculations with local orbital linearized augmented plane wave (lo-LAPW) method and Tran–Blaha’s modified Becke–Johnson (TB-mBJ) functional, Mn-doped n-type chalcopyrite semiconductor <span><math><mrow><msub><mrow><mi>ZnMn</mi></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mi>Sn</mi></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>x</mi><mo>)</mo></mrow></mrow></msub><msub><mrow><mi>As</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, studied within varying Mn doping concentration range <span><math><mrow><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span>. Doping of Mn to Sn site in pure <span><math><msub><mrow><mi>ZnSnAs</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> creates a strong spin effect, which makes it useful spintronic materials. We observed with increase the Mn concentration in <span><math><msub><mrow><mi>ZnSnAs</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, energy bandgap changes while the magnetic strength of the unit cell remains unchanged, showing stability of system’s magnetism. Optical properties of the Mn doped <span><math><msub><mrow><mi>ZnSnAs</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> compounds analysed in term of dielectric function, absorption spectra, and refractive index. Optical properties show, compound is optically low active in the Infrared (IR) region and more active in visible and ultraviolet (UV) region. The electronic and optical properties of Mn-doped <span><math><msub><mrow><mi>ZnSnAs</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, offer potential technological advancements in semiconductor device design technology and engineering.</p></div>\",\"PeriodicalId\":19513,\"journal\":{\"name\":\"Optik\",\"volume\":\"315 \",\"pages\":\"Article 172039\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030402624004388\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402624004388","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

利用先进的计算方法对掺锰 ZnSnAs2 化合物的电子、磁性和光学特性进行了研究。利用局部轨道线性化增强平面波(lo-LAPW)方法和 Tran-Blaha's modified Becke-Johnson (TB-mBJ) 函数的自旋极化密度泛函理论(DFT)计算,研究了掺锰的 n 型黄铜矿半导体 ZnMnxSn(1-x)As2,掺锰浓度范围为 0≤x≤0.5。在纯 ZnSnAs2 中的锡位点掺入锰会产生强烈的自旋效应,从而使其成为有用的自旋电子材料。我们观察到,随着 ZnSnAs2 中锰浓度的增加,能带隙会发生变化,而单位晶胞的磁强度保持不变,这表明了系统磁性的稳定性。通过介电函数、吸收光谱和折射率分析了掺锰 ZnSnAs2 化合物的光学特性。光学特性表明,该化合物在红外(IR)区域的光学活性较低,而在可见光和紫外(UV)区域的活性较高。掺锰 ZnSnAs2 的电子和光学特性为半导体器件设计技术和工程提供了潜在的技术进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TB-mBJ for doping concentration effects on magneto-optical properties in ZnMnxSn(1−x)As2 spintronics materials

An investigation for electronic, magnetic, and optical properties of Mn-doped ZnSnAs2 compound performed using advanced computational methods. Using spin-polarized density functional theory (DFT) calculations with local orbital linearized augmented plane wave (lo-LAPW) method and Tran–Blaha’s modified Becke–Johnson (TB-mBJ) functional, Mn-doped n-type chalcopyrite semiconductor ZnMnxSn(1x)As2, studied within varying Mn doping concentration range 0x0.5. Doping of Mn to Sn site in pure ZnSnAs2 creates a strong spin effect, which makes it useful spintronic materials. We observed with increase the Mn concentration in ZnSnAs2, energy bandgap changes while the magnetic strength of the unit cell remains unchanged, showing stability of system’s magnetism. Optical properties of the Mn doped ZnSnAs2 compounds analysed in term of dielectric function, absorption spectra, and refractive index. Optical properties show, compound is optically low active in the Infrared (IR) region and more active in visible and ultraviolet (UV) region. The electronic and optical properties of Mn-doped ZnSnAs2, offer potential technological advancements in semiconductor device design technology and engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optik
Optik 物理-光学
CiteScore
6.90
自引率
12.90%
发文量
1471
审稿时长
46 days
期刊介绍: Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields: Optics: -Optics design, geometrical and beam optics, wave optics- Optical and micro-optical components, diffractive optics, devices and systems- Photoelectric and optoelectronic devices- Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials- Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis- Optical testing and measuring techniques- Optical communication and computing- Physiological optics- As well as other related topics.
期刊最新文献
Weak mode locking dynamics in a thulium-doped fiber laser Design of cascaded diffractive optical elements generating different intensity distributions at several operating wavelengths Whispery gallery mode plasmonic biosensor based on intensifying graphene layer Chemometric advances in COD analysis: Overcoming turbidity interference with a Hybrid PLS-ANN approach A closely spaced dual-band dual-sense linear-to-circular polarization converter for X-band applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1