通过离散元分析法分析嫦娥五号月球碎屑的应变定位

IF 4.5 2区 工程技术 Q2 ENGINEERING, CHEMICAL Powder Technology Pub Date : 2024-09-16 DOI:10.1016/j.powtec.2024.120293
{"title":"通过离散元分析法分析嫦娥五号月球碎屑的应变定位","authors":"","doi":"10.1016/j.powtec.2024.120293","DOIUrl":null,"url":null,"abstract":"<div><p>The current understanding of the geotechnical behavior of lunar in-situ resources, particularly lunar regolith (LR), is significantly limited due to its scarcity. To address this gap, this research utilized the morphological characteristics of LR particles obtained from the Chang'E-5 (CE-5) mission to construct numerical simulants using the discrete element method (DEM). This approach was then employed to investigate the mechanical properties of LR. Firstly, high-definition lunar particle images from the CE-5 mission were selected to capture the morphological characteristics and grain size distribution. These morphological characteristics were linked with the rolling resistance parameter and incorporated into the three-dimensional (3D) micromechanical contact model. Additionally, a flexible boundary condition was employed in the triaxial simulation to ensure the evolution of strain localization. The relative particle translation gradient (RPTG) concept was utilized to capture the onset and development of strain localization during the shear process. The results indicated that the numerical lunar simulants can effectively reproduce the mechanical response of LR. Furthermore, at the particle scale, particle shape characteristics play a crucial role in particle rotation and translation during the shear process. This study may establish a foundation for lunar resource exploration and utilization techniques.</p></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing strain localization of Chang'E-5 lunar regolith through discrete element analysis\",\"authors\":\"\",\"doi\":\"10.1016/j.powtec.2024.120293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The current understanding of the geotechnical behavior of lunar in-situ resources, particularly lunar regolith (LR), is significantly limited due to its scarcity. To address this gap, this research utilized the morphological characteristics of LR particles obtained from the Chang'E-5 (CE-5) mission to construct numerical simulants using the discrete element method (DEM). This approach was then employed to investigate the mechanical properties of LR. Firstly, high-definition lunar particle images from the CE-5 mission were selected to capture the morphological characteristics and grain size distribution. These morphological characteristics were linked with the rolling resistance parameter and incorporated into the three-dimensional (3D) micromechanical contact model. Additionally, a flexible boundary condition was employed in the triaxial simulation to ensure the evolution of strain localization. The relative particle translation gradient (RPTG) concept was utilized to capture the onset and development of strain localization during the shear process. The results indicated that the numerical lunar simulants can effectively reproduce the mechanical response of LR. Furthermore, at the particle scale, particle shape characteristics play a crucial role in particle rotation and translation during the shear process. This study may establish a foundation for lunar resource exploration and utilization techniques.</p></div>\",\"PeriodicalId\":407,\"journal\":{\"name\":\"Powder Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032591024009379\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024009379","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于月球资源稀缺,目前对月球原位资源,尤其是月球碎屑岩(LR)岩土力学行为的了解非常有限。为了填补这一空白,本研究利用从嫦娥五号(CE-5)任务中获取的 LR 颗粒形态特征,采用离散元法(DEM)构建了数值模拟模型。然后采用这种方法研究 LR 的力学特性。首先,选择了嫦娥五号任务中的高清月球颗粒图像,以捕捉其形态特征和粒度分布。这些形态特征与滚动阻力参数相关联,并被纳入三维(3D)微机械接触模型。此外,在三轴模拟中还采用了柔性边界条件,以确保应变定位的演变。利用相对颗粒平移梯度(RPTG)概念来捕捉剪切过程中应变局部化的开始和发展。结果表明,数值月球模拟能有效地再现 LR 的机械响应。此外,在颗粒尺度上,颗粒的形状特征对剪切过程中颗粒的旋转和平移起着至关重要的作用。这项研究可为月球资源勘探和利用技术奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analyzing strain localization of Chang'E-5 lunar regolith through discrete element analysis

The current understanding of the geotechnical behavior of lunar in-situ resources, particularly lunar regolith (LR), is significantly limited due to its scarcity. To address this gap, this research utilized the morphological characteristics of LR particles obtained from the Chang'E-5 (CE-5) mission to construct numerical simulants using the discrete element method (DEM). This approach was then employed to investigate the mechanical properties of LR. Firstly, high-definition lunar particle images from the CE-5 mission were selected to capture the morphological characteristics and grain size distribution. These morphological characteristics were linked with the rolling resistance parameter and incorporated into the three-dimensional (3D) micromechanical contact model. Additionally, a flexible boundary condition was employed in the triaxial simulation to ensure the evolution of strain localization. The relative particle translation gradient (RPTG) concept was utilized to capture the onset and development of strain localization during the shear process. The results indicated that the numerical lunar simulants can effectively reproduce the mechanical response of LR. Furthermore, at the particle scale, particle shape characteristics play a crucial role in particle rotation and translation during the shear process. This study may establish a foundation for lunar resource exploration and utilization techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Powder Technology
Powder Technology 工程技术-工程:化工
CiteScore
9.90
自引率
15.40%
发文量
1047
审稿时长
46 days
期刊介绍: Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests: Formation and synthesis of particles by precipitation and other methods. Modification of particles by agglomeration, coating, comminution and attrition. Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces). Packing, failure, flow and permeability of assemblies of particles. Particle-particle interactions and suspension rheology. Handling and processing operations such as slurry flow, fluidization, pneumatic conveying. Interactions between particles and their environment, including delivery of particulate products to the body. Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters. For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.
期刊最新文献
A novel resource recovery strategy: Substituting carbon powder with organic solid waste in the production of zinc-bearing dust sludge metallization pellets Prediction of rod-like particle mixing in rotary drums by three machine learning methods based on DEM simulation data Breakage characteristics of large mineral particles in pneumatic conveying Suppressing the P2–OP4 phase transition of single-crystal P2-type Ni/Zn/Mn-based layered oxide for advanced sodium-ion batteries Dynamic diffusion characteristics of airflow and coal dust during the mining process based on MRF: A numerical simulation study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1