{"title":"基于 CWRF 模型的深度学习在中国西北地区夏季气候预测中的应用","authors":"","doi":"10.1016/j.atmosres.2024.107694","DOIUrl":null,"url":null,"abstract":"<div><p>This study analyzes the performance of the Climate–Weather Research and Forecasting (CWRF) model in predicting the summer temperature and precipitation in northwestern China (NWC) for the 1991–2021 period. It also examines the improvements in prediction resulting from the implementation of convolutional neural network (CNN) and long short-term memory (LSTM) downscaling methods. The results indicate that the CWRF model demonstrates reasonable ability in capturing the characteristics of climatological temperature and precipitation in NWC. Both the climatological temperature and precipitation predictions consistently demonstrate a systematic underestimation, revealing evident biases in regions characterized by complex terrain. In terms of interannual variation, the temperature prediction outperforms the precipitation prediction, whereas there is no significant difference in the temperature predictions for lead Months 1–3. However, uncertainties increase as the lead time is extended in precipitation prediction. Therefore, the combination of dynamical and statistical downscaling is employed to the summer temperature and precipitation prediction over NWC. It is shown both the CNN and LSTM downscaling methods can improve the prediction ability of the CWRF model for summer climatological temperature and precipitation. The LSTM method significantly reduces the root mean square error (RMSE) of precipitation and temperature predictions, indicating an improvement in predicting the spatial structure. At the interannual scale, the CNN method is less dependent on the lead time of prediction than the LSTM method is, and the interannual correlation coefficient of precipitation and temperature is greater than 0.1 compared with that of the raw CWRF model. These results provide valuable insights into understanding the prediction capabilities of the CWRF model in NWC and highlight the necessity of applying downscaling methods to the CWRF model to increase its prediction ability.</p></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of deep learning in summer climate prediction over northwestern China based on CWRF model\",\"authors\":\"\",\"doi\":\"10.1016/j.atmosres.2024.107694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study analyzes the performance of the Climate–Weather Research and Forecasting (CWRF) model in predicting the summer temperature and precipitation in northwestern China (NWC) for the 1991–2021 period. It also examines the improvements in prediction resulting from the implementation of convolutional neural network (CNN) and long short-term memory (LSTM) downscaling methods. The results indicate that the CWRF model demonstrates reasonable ability in capturing the characteristics of climatological temperature and precipitation in NWC. Both the climatological temperature and precipitation predictions consistently demonstrate a systematic underestimation, revealing evident biases in regions characterized by complex terrain. In terms of interannual variation, the temperature prediction outperforms the precipitation prediction, whereas there is no significant difference in the temperature predictions for lead Months 1–3. However, uncertainties increase as the lead time is extended in precipitation prediction. Therefore, the combination of dynamical and statistical downscaling is employed to the summer temperature and precipitation prediction over NWC. It is shown both the CNN and LSTM downscaling methods can improve the prediction ability of the CWRF model for summer climatological temperature and precipitation. The LSTM method significantly reduces the root mean square error (RMSE) of precipitation and temperature predictions, indicating an improvement in predicting the spatial structure. At the interannual scale, the CNN method is less dependent on the lead time of prediction than the LSTM method is, and the interannual correlation coefficient of precipitation and temperature is greater than 0.1 compared with that of the raw CWRF model. These results provide valuable insights into understanding the prediction capabilities of the CWRF model in NWC and highlight the necessity of applying downscaling methods to the CWRF model to increase its prediction ability.</p></div>\",\"PeriodicalId\":8600,\"journal\":{\"name\":\"Atmospheric Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169809524004769\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809524004769","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Application of deep learning in summer climate prediction over northwestern China based on CWRF model
This study analyzes the performance of the Climate–Weather Research and Forecasting (CWRF) model in predicting the summer temperature and precipitation in northwestern China (NWC) for the 1991–2021 period. It also examines the improvements in prediction resulting from the implementation of convolutional neural network (CNN) and long short-term memory (LSTM) downscaling methods. The results indicate that the CWRF model demonstrates reasonable ability in capturing the characteristics of climatological temperature and precipitation in NWC. Both the climatological temperature and precipitation predictions consistently demonstrate a systematic underestimation, revealing evident biases in regions characterized by complex terrain. In terms of interannual variation, the temperature prediction outperforms the precipitation prediction, whereas there is no significant difference in the temperature predictions for lead Months 1–3. However, uncertainties increase as the lead time is extended in precipitation prediction. Therefore, the combination of dynamical and statistical downscaling is employed to the summer temperature and precipitation prediction over NWC. It is shown both the CNN and LSTM downscaling methods can improve the prediction ability of the CWRF model for summer climatological temperature and precipitation. The LSTM method significantly reduces the root mean square error (RMSE) of precipitation and temperature predictions, indicating an improvement in predicting the spatial structure. At the interannual scale, the CNN method is less dependent on the lead time of prediction than the LSTM method is, and the interannual correlation coefficient of precipitation and temperature is greater than 0.1 compared with that of the raw CWRF model. These results provide valuable insights into understanding the prediction capabilities of the CWRF model in NWC and highlight the necessity of applying downscaling methods to the CWRF model to increase its prediction ability.
期刊介绍:
The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.