Samiyalu Usurupati , Aparna V. , Immanuel Raja , Chinmoy Saha , Yahia M.M. Antar
{"title":"针对 6G sub-THz 应用的超宽带 CMOS 片上偶极子天线设计技术的研究与分析","authors":"Samiyalu Usurupati , Aparna V. , Immanuel Raja , Chinmoy Saha , Yahia M.M. Antar","doi":"10.1016/j.aeue.2024.155532","DOIUrl":null,"url":null,"abstract":"<div><p>This article explores different techniques to improve the impedance bandwidth of on-chip dipole antennas in the sub-THz frequency range. Increasing the area of the dipole antenna has shown considerable improvement in bandwidth. However, this violates the design rule checks (DRC) of the foundry. Various topologies, such as squared-slotted dipole, meandered-slotted dipole, and straight-slotted dipole antennas, are introduced and implemented to increase the width of the on-chip antennas and thus the impedance bandwidth while meeting the DRC rules. All three topologies show better performance in terms of providing improved bandwidth. The straight-slotted technique is adopted as it offers less complexity and flexibility. The behavior of the impedances for different widths implemented by the straight-slotted topology has been analyzed in detail. A 6-strip straight-slotted dipole antenna results in an ultra-wide impedance bandwidth ranging from 76–262 GHz with a fractional bandwidth of 110% and a gain of −0.6 dBi at 159 GHz, while occupying a small silicon area of <span><math><mrow><mn>567</mn><mspace></mspace><mi>μ</mi><mi>m</mi><mo>×</mo><mn>112</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>. To the best of the authors’ knowledge, this is the highest fractional bandwidth that is reported to date at these frequencies.</p></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"187 ","pages":"Article 155532"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation and analysis of design techniques for ultra-wideband CMOS on-chip dipole antennas for 6G sub-THz applications\",\"authors\":\"Samiyalu Usurupati , Aparna V. , Immanuel Raja , Chinmoy Saha , Yahia M.M. Antar\",\"doi\":\"10.1016/j.aeue.2024.155532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article explores different techniques to improve the impedance bandwidth of on-chip dipole antennas in the sub-THz frequency range. Increasing the area of the dipole antenna has shown considerable improvement in bandwidth. However, this violates the design rule checks (DRC) of the foundry. Various topologies, such as squared-slotted dipole, meandered-slotted dipole, and straight-slotted dipole antennas, are introduced and implemented to increase the width of the on-chip antennas and thus the impedance bandwidth while meeting the DRC rules. All three topologies show better performance in terms of providing improved bandwidth. The straight-slotted technique is adopted as it offers less complexity and flexibility. The behavior of the impedances for different widths implemented by the straight-slotted topology has been analyzed in detail. A 6-strip straight-slotted dipole antenna results in an ultra-wide impedance bandwidth ranging from 76–262 GHz with a fractional bandwidth of 110% and a gain of −0.6 dBi at 159 GHz, while occupying a small silicon area of <span><math><mrow><mn>567</mn><mspace></mspace><mi>μ</mi><mi>m</mi><mo>×</mo><mn>112</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>. To the best of the authors’ knowledge, this is the highest fractional bandwidth that is reported to date at these frequencies.</p></div>\",\"PeriodicalId\":50844,\"journal\":{\"name\":\"Aeu-International Journal of Electronics and Communications\",\"volume\":\"187 \",\"pages\":\"Article 155532\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aeu-International Journal of Electronics and Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1434841124004187\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841124004187","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Investigation and analysis of design techniques for ultra-wideband CMOS on-chip dipole antennas for 6G sub-THz applications
This article explores different techniques to improve the impedance bandwidth of on-chip dipole antennas in the sub-THz frequency range. Increasing the area of the dipole antenna has shown considerable improvement in bandwidth. However, this violates the design rule checks (DRC) of the foundry. Various topologies, such as squared-slotted dipole, meandered-slotted dipole, and straight-slotted dipole antennas, are introduced and implemented to increase the width of the on-chip antennas and thus the impedance bandwidth while meeting the DRC rules. All three topologies show better performance in terms of providing improved bandwidth. The straight-slotted technique is adopted as it offers less complexity and flexibility. The behavior of the impedances for different widths implemented by the straight-slotted topology has been analyzed in detail. A 6-strip straight-slotted dipole antenna results in an ultra-wide impedance bandwidth ranging from 76–262 GHz with a fractional bandwidth of 110% and a gain of −0.6 dBi at 159 GHz, while occupying a small silicon area of . To the best of the authors’ knowledge, this is the highest fractional bandwidth that is reported to date at these frequencies.
期刊介绍:
AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including:
signal and system theory, digital signal processing
network theory and circuit design
information theory, communication theory and techniques, modulation, source and channel coding
switching theory and techniques, communication protocols
optical communications
microwave theory and techniques, radar, sonar
antennas, wave propagation
AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.