Huaineng Tang , Haoran Ye , Wenqing Yang , Yikang Huang , Tiantai Sun , Yangyuan Ge , Hongxin Zhang , Yuqing Sun , Shanying Lin , Zhonghui Liu , Wenhua Li , Zhouqing Xie
{"title":"西太平洋的海气二氧化碳交换受季风和末次冰期巨型硅藻(Ethmodiscus rex)繁殖的影响","authors":"Huaineng Tang , Haoran Ye , Wenqing Yang , Yikang Huang , Tiantai Sun , Yangyuan Ge , Hongxin Zhang , Yuqing Sun , Shanying Lin , Zhonghui Liu , Wenhua Li , Zhouqing Xie","doi":"10.1016/j.jseaes.2024.106335","DOIUrl":null,"url":null,"abstract":"<div><p>The concentration of atmospheric CO<sub>2</sub> increased rapidly during the last deglaciation due to CO<sub>2</sub> outgassing from oceans. However, records of deglacial surface seawater <em>p</em>CO<sub>2-sw</sub> are sparse, hindering our understanding of the process and mechanism of air-sea CO<sub>2</sub> exchange and its influence on glacial-interglacial climate change. Here we reconstructed surface seawater <em>p</em>CO<sub>2-sw</sub> for the last deglacial period using carbon isotope composition (δ<sup>13</sup>C) of giant diatom (<em>Ethmodiscus rex</em>) frustules from deep-sea sedimentary core collected in the Philippine Sea, western Pacific. Results showed that air-sea CO<sub>2</sub> was fluctuating in the western Pacific during the last deglaciation. The gradients of air-sea CO<sub>2</sub> are dominated by monsoon and biological productivity. The enhanced East Asian winter Monsoon and shallow thermocline during late Heinrich Stadial 1 maintained equilibrium in the air-sea CO<sub>2</sub> exchange balance. During the Bølling period, enhanced East Asian Summer Monsoon has been observed to accelerate the dissolution of eolian-dust and promoted the growth of <em>Ethmodiscus rex</em>, which has been linked to increased primary productivity and, consequently, the uptake of atmospheric CO<sub>2</sub> in the western Pacific. During the Allerød period, continued enhancement of EASM allowed the Philippine Sea to act as a weak CO<sub>2</sub> source releasing CO<sub>2</sub> to the atmosphere. During the Younger Dryas period, as the EASM weaken and the EAWM strengthen, Δ<em>p</em>CO<sub>2(sw-atm)</sub> decreased. Our findings highlight the tropical ocean’s role in deglacial air-sea CO<sub>2</sub> exchange and provide insights into the monsoonal and biological drivers of the processes.</p></div>","PeriodicalId":50253,"journal":{"name":"Journal of Asian Earth Sciences","volume":"276 ","pages":"Article 106335"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Air-sea CO2 exchange in the western Pacific influenced by monsoon and giant diatom (Ethmodiscus rex) blooms during the last deglaciation\",\"authors\":\"Huaineng Tang , Haoran Ye , Wenqing Yang , Yikang Huang , Tiantai Sun , Yangyuan Ge , Hongxin Zhang , Yuqing Sun , Shanying Lin , Zhonghui Liu , Wenhua Li , Zhouqing Xie\",\"doi\":\"10.1016/j.jseaes.2024.106335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The concentration of atmospheric CO<sub>2</sub> increased rapidly during the last deglaciation due to CO<sub>2</sub> outgassing from oceans. However, records of deglacial surface seawater <em>p</em>CO<sub>2-sw</sub> are sparse, hindering our understanding of the process and mechanism of air-sea CO<sub>2</sub> exchange and its influence on glacial-interglacial climate change. Here we reconstructed surface seawater <em>p</em>CO<sub>2-sw</sub> for the last deglacial period using carbon isotope composition (δ<sup>13</sup>C) of giant diatom (<em>Ethmodiscus rex</em>) frustules from deep-sea sedimentary core collected in the Philippine Sea, western Pacific. Results showed that air-sea CO<sub>2</sub> was fluctuating in the western Pacific during the last deglaciation. The gradients of air-sea CO<sub>2</sub> are dominated by monsoon and biological productivity. The enhanced East Asian winter Monsoon and shallow thermocline during late Heinrich Stadial 1 maintained equilibrium in the air-sea CO<sub>2</sub> exchange balance. During the Bølling period, enhanced East Asian Summer Monsoon has been observed to accelerate the dissolution of eolian-dust and promoted the growth of <em>Ethmodiscus rex</em>, which has been linked to increased primary productivity and, consequently, the uptake of atmospheric CO<sub>2</sub> in the western Pacific. During the Allerød period, continued enhancement of EASM allowed the Philippine Sea to act as a weak CO<sub>2</sub> source releasing CO<sub>2</sub> to the atmosphere. During the Younger Dryas period, as the EASM weaken and the EAWM strengthen, Δ<em>p</em>CO<sub>2(sw-atm)</sub> decreased. Our findings highlight the tropical ocean’s role in deglacial air-sea CO<sub>2</sub> exchange and provide insights into the monsoonal and biological drivers of the processes.</p></div>\",\"PeriodicalId\":50253,\"journal\":{\"name\":\"Journal of Asian Earth Sciences\",\"volume\":\"276 \",\"pages\":\"Article 106335\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Asian Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367912024003304\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367912024003304","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Air-sea CO2 exchange in the western Pacific influenced by monsoon and giant diatom (Ethmodiscus rex) blooms during the last deglaciation
The concentration of atmospheric CO2 increased rapidly during the last deglaciation due to CO2 outgassing from oceans. However, records of deglacial surface seawater pCO2-sw are sparse, hindering our understanding of the process and mechanism of air-sea CO2 exchange and its influence on glacial-interglacial climate change. Here we reconstructed surface seawater pCO2-sw for the last deglacial period using carbon isotope composition (δ13C) of giant diatom (Ethmodiscus rex) frustules from deep-sea sedimentary core collected in the Philippine Sea, western Pacific. Results showed that air-sea CO2 was fluctuating in the western Pacific during the last deglaciation. The gradients of air-sea CO2 are dominated by monsoon and biological productivity. The enhanced East Asian winter Monsoon and shallow thermocline during late Heinrich Stadial 1 maintained equilibrium in the air-sea CO2 exchange balance. During the Bølling period, enhanced East Asian Summer Monsoon has been observed to accelerate the dissolution of eolian-dust and promoted the growth of Ethmodiscus rex, which has been linked to increased primary productivity and, consequently, the uptake of atmospheric CO2 in the western Pacific. During the Allerød period, continued enhancement of EASM allowed the Philippine Sea to act as a weak CO2 source releasing CO2 to the atmosphere. During the Younger Dryas period, as the EASM weaken and the EAWM strengthen, ΔpCO2(sw-atm) decreased. Our findings highlight the tropical ocean’s role in deglacial air-sea CO2 exchange and provide insights into the monsoonal and biological drivers of the processes.
期刊介绍:
Journal of Asian Earth Sciences has an open access mirror journal Journal of Asian Earth Sciences: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal of Asian Earth Sciences is an international interdisciplinary journal devoted to all aspects of research related to the solid Earth Sciences of Asia. The Journal publishes high quality, peer-reviewed scientific papers on the regional geology, tectonics, geochemistry and geophysics of Asia. It will be devoted primarily to research papers but short communications relating to new developments of broad interest, reviews and book reviews will also be included. Papers must have international appeal and should present work of more than local significance.
The scope includes deep processes of the Asian continent and its adjacent oceans; seismology and earthquakes; orogeny, magmatism, metamorphism and volcanism; growth, deformation and destruction of the Asian crust; crust-mantle interaction; evolution of life (early life, biostratigraphy, biogeography and mass-extinction); fluids, fluxes and reservoirs of mineral and energy resources; surface processes (weathering, erosion, transport and deposition of sediments) and resulting geomorphology; and the response of the Earth to global climate change as viewed within the Asian continent and surrounding oceans.