RTIA-Mono:利用全局-本地信息聚合进行实时轻量级自监督单目深度估计

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Digital Signal Processing Pub Date : 2024-09-11 DOI:10.1016/j.dsp.2024.104769
Bowen Zhao , Hongdou He , Hang Xu , Peng Shi , Xiaobing Hao , Guoyan Huang
{"title":"RTIA-Mono:利用全局-本地信息聚合进行实时轻量级自监督单目深度估计","authors":"Bowen Zhao ,&nbsp;Hongdou He ,&nbsp;Hang Xu ,&nbsp;Peng Shi ,&nbsp;Xiaobing Hao ,&nbsp;Guoyan Huang","doi":"10.1016/j.dsp.2024.104769","DOIUrl":null,"url":null,"abstract":"<div><p>Self-supervised monocular depth estimation has attracted significant attention in computer vision, especially for applications like autonomous driving and robotics. Recently, CNNs and Transformers have achieved tremendous success in this task. However, existing research primarily focuses on improving estimation accuracy, increasing model complexity poses challenges for deployment on edge computing devices. Shallow CNNs aid lightweight network construction but suffer limited receptive fields, hindering fusion of local geometric features and global semantic information. To address these issues, we propose an efficient real-time lightweight self-supervised architecture, RTIA-Mono, for monocular depth estimation. Firstly, we design a cross-stage feature fusion structure promoting feature aggregation and fusion across stages. Secondly, in each stage, we propose a Global Local Information Aggregation (GLIA) module integrating advantages of CNNs and Transformers to aggregate local and global features. Additionally, we introduce a Directional Feature Enhancement (DFE) module supplementing spatial structure information to mitigate spatial information loss from downsampling. Through sophisticated design, the proposed approach outperforms state-of-the-art methods on KITTI benchmark with the least parameters, and achieves a good balance between accuracy, complexity and inference speed. Furthermore, RTIA-Mono demonstrates excellent generalization on other datasets.</p></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"156 ","pages":"Article 104769"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RTIA-Mono: Real-time lightweight self-supervised monocular depth estimation with global-local information aggregation\",\"authors\":\"Bowen Zhao ,&nbsp;Hongdou He ,&nbsp;Hang Xu ,&nbsp;Peng Shi ,&nbsp;Xiaobing Hao ,&nbsp;Guoyan Huang\",\"doi\":\"10.1016/j.dsp.2024.104769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Self-supervised monocular depth estimation has attracted significant attention in computer vision, especially for applications like autonomous driving and robotics. Recently, CNNs and Transformers have achieved tremendous success in this task. However, existing research primarily focuses on improving estimation accuracy, increasing model complexity poses challenges for deployment on edge computing devices. Shallow CNNs aid lightweight network construction but suffer limited receptive fields, hindering fusion of local geometric features and global semantic information. To address these issues, we propose an efficient real-time lightweight self-supervised architecture, RTIA-Mono, for monocular depth estimation. Firstly, we design a cross-stage feature fusion structure promoting feature aggregation and fusion across stages. Secondly, in each stage, we propose a Global Local Information Aggregation (GLIA) module integrating advantages of CNNs and Transformers to aggregate local and global features. Additionally, we introduce a Directional Feature Enhancement (DFE) module supplementing spatial structure information to mitigate spatial information loss from downsampling. Through sophisticated design, the proposed approach outperforms state-of-the-art methods on KITTI benchmark with the least parameters, and achieves a good balance between accuracy, complexity and inference speed. Furthermore, RTIA-Mono demonstrates excellent generalization on other datasets.</p></div>\",\"PeriodicalId\":51011,\"journal\":{\"name\":\"Digital Signal Processing\",\"volume\":\"156 \",\"pages\":\"Article 104769\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1051200424003944\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424003944","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

自监督单目深度估计在计算机视觉领域引起了极大关注,尤其是在自动驾驶和机器人等应用领域。最近,CNN 和变换器在这项任务中取得了巨大成功。然而,现有的研究主要集中在提高估计精度上,模型复杂度的增加给边缘计算设备的部署带来了挑战。浅层 CNN 有助于轻量级网络构建,但其感受野有限,阻碍了局部几何特征和全局语义信息的融合。为了解决这些问题,我们提出了一种用于单目深度估计的高效实时轻量级自监督架构 RTIA-Mono。首先,我们设计了一种跨阶段特征融合结构,以促进跨阶段的特征聚合和融合。其次,在每个阶段,我们提出了全局局部信息聚合(GLIA)模块,整合了 CNN 和变换器的优势,以聚合局部和全局特征。此外,我们还引入了定向特征增强(DFE)模块,以补充空间结构信息,从而减少下采样造成的空间信息损失。通过复杂的设计,所提出的方法在 KITTI 基准上以最少的参数超越了最先进的方法,并在准确性、复杂性和推理速度之间实现了良好的平衡。此外,RTIA-Mono 还在其他数据集上展示了出色的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RTIA-Mono: Real-time lightweight self-supervised monocular depth estimation with global-local information aggregation

Self-supervised monocular depth estimation has attracted significant attention in computer vision, especially for applications like autonomous driving and robotics. Recently, CNNs and Transformers have achieved tremendous success in this task. However, existing research primarily focuses on improving estimation accuracy, increasing model complexity poses challenges for deployment on edge computing devices. Shallow CNNs aid lightweight network construction but suffer limited receptive fields, hindering fusion of local geometric features and global semantic information. To address these issues, we propose an efficient real-time lightweight self-supervised architecture, RTIA-Mono, for monocular depth estimation. Firstly, we design a cross-stage feature fusion structure promoting feature aggregation and fusion across stages. Secondly, in each stage, we propose a Global Local Information Aggregation (GLIA) module integrating advantages of CNNs and Transformers to aggregate local and global features. Additionally, we introduce a Directional Feature Enhancement (DFE) module supplementing spatial structure information to mitigate spatial information loss from downsampling. Through sophisticated design, the proposed approach outperforms state-of-the-art methods on KITTI benchmark with the least parameters, and achieves a good balance between accuracy, complexity and inference speed. Furthermore, RTIA-Mono demonstrates excellent generalization on other datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
期刊最新文献
Adaptive polarimetric persymmetric detection for distributed subspace targets in lognormal texture clutter MFFR-net: Multi-scale feature fusion and attentive recalibration network for deep neural speech enhancement PV-YOLO: A lightweight pedestrian and vehicle detection model based on improved YOLOv8 Efficient recurrent real video restoration IGGCN: Individual-guided graph convolution network for pedestrian trajectory prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1