{"title":"W(110) 表面铁镍纳米粒子的元素分布和熔融特性","authors":"","doi":"10.1016/j.susc.2024.122606","DOIUrl":null,"url":null,"abstract":"<div><p>In this report we describe new findings on the structure, composition and thermal stability of Fe<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>Ni<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span> nanoparticles, synthesized via a magnetron sputtering source and deposited on a clean W(110) surface. The elemental distribution of the nanoparticles was determined by energy dispersive X-ray (EDX) and electron energy loss spectroscopy (EELS). The melting behavior of the nanoparticles was studied under UHV by scanning tunneling microscopy (STM) upon heating. Notably, it has been observed that the nanoparticle’s core is characterized by an enrichment of Ni atoms, while the shell shows a higher amount of Fe atoms. Specifically, in the case of Fe<sub>0.75</sub>Ni<sub>0.25</sub> and Fe<sub>0.25</sub>Ni<sub>0.75</sub>, where a Ni core is surrounded by a Fe shell, all nanoparticles completely liquefy after heating at 540 K. In contrast, the Fe<sub>0.50</sub>Ni<sub>0.50</sub> nanoparticles, which exhibit a homogeneous distribution of both elements, only begin to melt around 540 K.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elemental Distribution and Melting Characteristics of FeNi nanoparticles on W(110) surfaces\",\"authors\":\"\",\"doi\":\"10.1016/j.susc.2024.122606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this report we describe new findings on the structure, composition and thermal stability of Fe<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>Ni<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span> nanoparticles, synthesized via a magnetron sputtering source and deposited on a clean W(110) surface. The elemental distribution of the nanoparticles was determined by energy dispersive X-ray (EDX) and electron energy loss spectroscopy (EELS). The melting behavior of the nanoparticles was studied under UHV by scanning tunneling microscopy (STM) upon heating. Notably, it has been observed that the nanoparticle’s core is characterized by an enrichment of Ni atoms, while the shell shows a higher amount of Fe atoms. Specifically, in the case of Fe<sub>0.75</sub>Ni<sub>0.25</sub> and Fe<sub>0.25</sub>Ni<sub>0.75</sub>, where a Ni core is surrounded by a Fe shell, all nanoparticles completely liquefy after heating at 540 K. In contrast, the Fe<sub>0.50</sub>Ni<sub>0.50</sub> nanoparticles, which exhibit a homogeneous distribution of both elements, only begin to melt around 540 K.</p></div>\",\"PeriodicalId\":22100,\"journal\":{\"name\":\"Surface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039602824001572\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824001572","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
在本报告中,我们介绍了通过磁控溅射源合成并沉积在洁净 W(110) 表面的 FexNi1-x 纳米粒子的结构、组成和热稳定性方面的新发现。纳米粒子的元素分布是通过能量色散 X 射线(EDX)和电子能量损失光谱(EELS)测定的。在超高真空条件下,通过扫描隧道显微镜(STM)研究了纳米颗粒加热后的熔化行为。值得注意的是,我们观察到纳米粒子的核心富含镍原子,而外壳则含有较多的铁原子。具体来说,Fe0.75Ni0.25 和 Fe0.25Ni0.75(镍核被铁壳包围)纳米粒子在 540 K 的温度下加热后全部完全液化。
Elemental Distribution and Melting Characteristics of FeNi nanoparticles on W(110) surfaces
In this report we describe new findings on the structure, composition and thermal stability of FeNi nanoparticles, synthesized via a magnetron sputtering source and deposited on a clean W(110) surface. The elemental distribution of the nanoparticles was determined by energy dispersive X-ray (EDX) and electron energy loss spectroscopy (EELS). The melting behavior of the nanoparticles was studied under UHV by scanning tunneling microscopy (STM) upon heating. Notably, it has been observed that the nanoparticle’s core is characterized by an enrichment of Ni atoms, while the shell shows a higher amount of Fe atoms. Specifically, in the case of Fe0.75Ni0.25 and Fe0.25Ni0.75, where a Ni core is surrounded by a Fe shell, all nanoparticles completely liquefy after heating at 540 K. In contrast, the Fe0.50Ni0.50 nanoparticles, which exhibit a homogeneous distribution of both elements, only begin to melt around 540 K.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.