Hyerin Lee , Min-Jeong Kim , Junkyu Chung , Wansun Kim , Hye-Jeong Jo , Tae Gi Kim , Jae-Ho Shin , Gi-Ja Lee , Fu-Shi Quan , Hyun-Hee Kong , Sang Woong Moon , Eun-Kyung Moon , Samjin Choi
{"title":"用于快速无创检测棘阿米巴感染的络氨酸突变酶靶向核壳纳米组装激活型 SERS 免疫测定平台","authors":"Hyerin Lee , Min-Jeong Kim , Junkyu Chung , Wansun Kim , Hye-Jeong Jo , Tae Gi Kim , Jae-Ho Shin , Gi-Ja Lee , Fu-Shi Quan , Hyun-Hee Kong , Sang Woong Moon , Eun-Kyung Moon , Samjin Choi","doi":"10.1016/j.nantod.2024.102506","DOIUrl":null,"url":null,"abstract":"<div><p>Contact lens care and early diagnosis of <em>Acanthamoeba</em> keratitis (AK) are very important to prevent progression to blindness due to AK, which develops when <em>Acanthamoeba</em> attaches to contact lens-damaged corneas. Therefore, we propose a novel, non-invasive, immuno-surface-enhanced Raman scattering (SERS) sensing platform for rapid and accurate detection of <em>Acanthamoeba</em> infection in the tears and contact lens solutions of humans. This optic analysis method was based on the proven biological performance of chorismate mutase (CM)<em>-</em>specific monoclonal and polyclonal antibodies on trophozoite and cyst forms of <em>Acanthamoeba castellanii,</em> and its conditioned media. SERS-based, ultra-low concentration detection was achieved by the anisotropic fanblade-shaped core-shell nanoassembly (Ag@AuFNP) embedded with 4-fluorobenzenethiol Raman reporter. The immuno-SERS platform combining Ag@AuFNP and CM-specific antibody complexes was evaluated <em>in vitro</em> and <em>in vivo</em>. The non-invasive SERS-activated biosensing platform indicates strong feasibility for AK detection in human tears and contact lens solutions.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102506"},"PeriodicalIF":13.2000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A chorismate mutase-targeted, core-shell nanoassembly-activated SERS immunoassay platform for rapid non-invasive detection of Acanthamoeba infection\",\"authors\":\"Hyerin Lee , Min-Jeong Kim , Junkyu Chung , Wansun Kim , Hye-Jeong Jo , Tae Gi Kim , Jae-Ho Shin , Gi-Ja Lee , Fu-Shi Quan , Hyun-Hee Kong , Sang Woong Moon , Eun-Kyung Moon , Samjin Choi\",\"doi\":\"10.1016/j.nantod.2024.102506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Contact lens care and early diagnosis of <em>Acanthamoeba</em> keratitis (AK) are very important to prevent progression to blindness due to AK, which develops when <em>Acanthamoeba</em> attaches to contact lens-damaged corneas. Therefore, we propose a novel, non-invasive, immuno-surface-enhanced Raman scattering (SERS) sensing platform for rapid and accurate detection of <em>Acanthamoeba</em> infection in the tears and contact lens solutions of humans. This optic analysis method was based on the proven biological performance of chorismate mutase (CM)<em>-</em>specific monoclonal and polyclonal antibodies on trophozoite and cyst forms of <em>Acanthamoeba castellanii,</em> and its conditioned media. SERS-based, ultra-low concentration detection was achieved by the anisotropic fanblade-shaped core-shell nanoassembly (Ag@AuFNP) embedded with 4-fluorobenzenethiol Raman reporter. The immuno-SERS platform combining Ag@AuFNP and CM-specific antibody complexes was evaluated <em>in vitro</em> and <em>in vivo</em>. The non-invasive SERS-activated biosensing platform indicates strong feasibility for AK detection in human tears and contact lens solutions.</p></div>\",\"PeriodicalId\":395,\"journal\":{\"name\":\"Nano Today\",\"volume\":\"59 \",\"pages\":\"Article 102506\"},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1748013224003621\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224003621","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
隐形眼镜护理和阿卡阿米巴角膜炎(AK)的早期诊断对于防止因阿卡阿米巴附着在隐形眼镜损坏的角膜上而导致失明非常重要。因此,我们提出了一种新型、非侵入式、免疫表面增强拉曼散射(SERS)传感平台,用于快速准确地检测人类泪液和隐形眼镜溶液中的棘阿米巴感染。这种光学分析方法基于络氨酸突变酶(CM)特异性单克隆和多克隆抗体在滋养体和囊肿型卡氏棘阿米巴及其条件培养基上已被证实的生物学性能。各向异性扇形核壳纳米组件(Ag@AuFNP)嵌入了 4-氟苯硫酚拉曼报告物,实现了基于 SERS 的超低浓度检测。结合 Ag@AuFNP 和 CM 特异性抗体复合物的免疫 SERS 平台在体外和体内进行了评估。非侵入式 SERS 激活生物传感平台表明,在人类眼泪和隐形眼镜溶液中检测 AK 具有很强的可行性。
A chorismate mutase-targeted, core-shell nanoassembly-activated SERS immunoassay platform for rapid non-invasive detection of Acanthamoeba infection
Contact lens care and early diagnosis of Acanthamoeba keratitis (AK) are very important to prevent progression to blindness due to AK, which develops when Acanthamoeba attaches to contact lens-damaged corneas. Therefore, we propose a novel, non-invasive, immuno-surface-enhanced Raman scattering (SERS) sensing platform for rapid and accurate detection of Acanthamoeba infection in the tears and contact lens solutions of humans. This optic analysis method was based on the proven biological performance of chorismate mutase (CM)-specific monoclonal and polyclonal antibodies on trophozoite and cyst forms of Acanthamoeba castellanii, and its conditioned media. SERS-based, ultra-low concentration detection was achieved by the anisotropic fanblade-shaped core-shell nanoassembly (Ag@AuFNP) embedded with 4-fluorobenzenethiol Raman reporter. The immuno-SERS platform combining Ag@AuFNP and CM-specific antibody complexes was evaluated in vitro and in vivo. The non-invasive SERS-activated biosensing platform indicates strong feasibility for AK detection in human tears and contact lens solutions.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.