熵驱动的扩增反应和 CRISPR/Cas12a 系统构成了特异性检测大肠杆菌的电化学生物传感器的基础

IF 4.8 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioelectrochemistry Pub Date : 2024-09-11 DOI:10.1016/j.bioelechem.2024.108815
Longjian Huang , Wenzhao Zhang , Mingxuan Liu , Yuanxun Gong , Qianli Tang , Kaihua Wang , Xianjiu Liao , Kai Zhang , Jihua Wei
{"title":"熵驱动的扩增反应和 CRISPR/Cas12a 系统构成了特异性检测大肠杆菌的电化学生物传感器的基础","authors":"Longjian Huang ,&nbsp;Wenzhao Zhang ,&nbsp;Mingxuan Liu ,&nbsp;Yuanxun Gong ,&nbsp;Qianli Tang ,&nbsp;Kaihua Wang ,&nbsp;Xianjiu Liao ,&nbsp;Kai Zhang ,&nbsp;Jihua Wei","doi":"10.1016/j.bioelechem.2024.108815","DOIUrl":null,"url":null,"abstract":"<div><p>We present an innovative biosensor designed for the precise identification of Escherichia coli (<em>E.coli</em>), a predominant pathogen responsible for gastrointestinal infections. <em>E.coli</em> is prevalent in environments characterized by substandard water quality and can lead to severe diarrhea, especially in hospital settings. The device employs entropy-driven reactions to synthesize copious amounts of double-stranded DNA (dsDNA), which, upon binding with crRNA, triggers the CRISPR/Cas12a system’s cleavage mechanism. This process results in the separation of a ferrocene (Fc)-tagged DNA strand from the electrode, enhancing the electrochemical signal for <em>E.coli</em>’s rapid and accurate detection. Our tests confirm the biosensor’s ability to quantify <em>E.coli</em> across a dynamic range from 100 to 10 million CFU/mL, achieving a detection threshold of just over 5 CFU/mL. The development of this electrochemical biosensor highlights its exceptional selectivity, high sensitivity, and user-friendly interface for <em>E.coli</em> detection. It stands as a significant step forward in pathogen detection technology, promising new directions for identifying various bacterial infections through the CRISPR/Cas mechanism.</p></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"161 ","pages":"Article 108815"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1567539424001774/pdfft?md5=883639504a8697375060e245d3576363&pid=1-s2.0-S1567539424001774-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Entropy-driven amplification reaction and the CRISPR/Cas12a system form the basis of an electrochemical biosensor for E.coli-specific detection\",\"authors\":\"Longjian Huang ,&nbsp;Wenzhao Zhang ,&nbsp;Mingxuan Liu ,&nbsp;Yuanxun Gong ,&nbsp;Qianli Tang ,&nbsp;Kaihua Wang ,&nbsp;Xianjiu Liao ,&nbsp;Kai Zhang ,&nbsp;Jihua Wei\",\"doi\":\"10.1016/j.bioelechem.2024.108815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present an innovative biosensor designed for the precise identification of Escherichia coli (<em>E.coli</em>), a predominant pathogen responsible for gastrointestinal infections. <em>E.coli</em> is prevalent in environments characterized by substandard water quality and can lead to severe diarrhea, especially in hospital settings. The device employs entropy-driven reactions to synthesize copious amounts of double-stranded DNA (dsDNA), which, upon binding with crRNA, triggers the CRISPR/Cas12a system’s cleavage mechanism. This process results in the separation of a ferrocene (Fc)-tagged DNA strand from the electrode, enhancing the electrochemical signal for <em>E.coli</em>’s rapid and accurate detection. Our tests confirm the biosensor’s ability to quantify <em>E.coli</em> across a dynamic range from 100 to 10 million CFU/mL, achieving a detection threshold of just over 5 CFU/mL. The development of this electrochemical biosensor highlights its exceptional selectivity, high sensitivity, and user-friendly interface for <em>E.coli</em> detection. It stands as a significant step forward in pathogen detection technology, promising new directions for identifying various bacterial infections through the CRISPR/Cas mechanism.</p></div>\",\"PeriodicalId\":252,\"journal\":{\"name\":\"Bioelectrochemistry\",\"volume\":\"161 \",\"pages\":\"Article 108815\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1567539424001774/pdfft?md5=883639504a8697375060e245d3576363&pid=1-s2.0-S1567539424001774-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567539424001774\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539424001774","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了一种创新的生物传感器,设计用于精确识别大肠杆菌(E.coli),这是一种导致胃肠道感染的主要病原体。大肠杆菌普遍存在于水质不达标的环境中,可导致严重腹泻,尤其是在医院环境中。该装置利用熵驱动反应合成大量双链 DNA(dsDNA),在与 crRNA 结合后触发 CRISPR/Cas12a 系统的裂解机制。这一过程导致二茂铁(Fc)标记的 DNA 链与电极分离,从而增强了电化学信号,以便快速准确地检测大肠杆菌。我们的测试证实,该生物传感器能够在 1 到 1000 万 CFU/mL 的动态范围内定量检测大肠杆菌,检测阈值略高于 5 CFU/mL。这种电化学生物传感器的开发凸显了其在大肠杆菌检测方面的卓越选择性、高灵敏度和用户友好界面。它是病原体检测技术向前迈出的重要一步,为通过 CRISPR/Cas 机制识别各种细菌感染指明了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Entropy-driven amplification reaction and the CRISPR/Cas12a system form the basis of an electrochemical biosensor for E.coli-specific detection

We present an innovative biosensor designed for the precise identification of Escherichia coli (E.coli), a predominant pathogen responsible for gastrointestinal infections. E.coli is prevalent in environments characterized by substandard water quality and can lead to severe diarrhea, especially in hospital settings. The device employs entropy-driven reactions to synthesize copious amounts of double-stranded DNA (dsDNA), which, upon binding with crRNA, triggers the CRISPR/Cas12a system’s cleavage mechanism. This process results in the separation of a ferrocene (Fc)-tagged DNA strand from the electrode, enhancing the electrochemical signal for E.coli’s rapid and accurate detection. Our tests confirm the biosensor’s ability to quantify E.coli across a dynamic range from 100 to 10 million CFU/mL, achieving a detection threshold of just over 5 CFU/mL. The development of this electrochemical biosensor highlights its exceptional selectivity, high sensitivity, and user-friendly interface for E.coli detection. It stands as a significant step forward in pathogen detection technology, promising new directions for identifying various bacterial infections through the CRISPR/Cas mechanism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioelectrochemistry
Bioelectrochemistry 生物-电化学
CiteScore
9.10
自引率
6.00%
发文量
238
审稿时长
38 days
期刊介绍: An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of: • Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction. • Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms) • Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes) • Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion) • Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair). • Organization and use of arrays in-vitro and in-vivo, including as part of feedback control. • Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.
期刊最新文献
Enhanced corrosion resistance and biofilm inhibition of TC4 with slight Cu addition against marine Pseudomonas aeruginosa. Corrigendum to "Molecular monolayers on silicon as substrates for biosensors" [Bioelectrochem. 80(1) (2010) 17-25]. Label-free electrochemical biosensor with magnetic self-assembly constructed via PNA-DNA hybridization process on α-Fe2O3/Fe3O4 nanosheets for APOE ε4 genes ultrasensitive detection Time-resolved electromechanical and conductive behavior of nanostructured bilayers tethered to the surface of the electrode with incorporated channel proteins and peptides. Sensitive detection of K-ras gene by a dual-mode “on-off-on” sensor based on bipyridine ruthenium-MOF and bis-enzymatic cleavage technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1