Weifang Han , Deyi Liu , Guoliang Wang , Suliang Li , En You , Zhengfeng Jia , Yuchao Li
{"title":"制备氮化硼/氧化铜@多壁碳纳米管复合材料,以增强相变材料的传热和光热转换能力","authors":"Weifang Han , Deyi Liu , Guoliang Wang , Suliang Li , En You , Zhengfeng Jia , Yuchao Li","doi":"10.1016/j.arabjc.2024.105997","DOIUrl":null,"url":null,"abstract":"<div><p>To realize the efficient storage and conversion of solar energy by phase change materials (PCMs), low photothermal conversion efficiency and poor heat transfer performance remain great challenges. Herein, polyethylene glycol (PEG)-based composite PCMs with excellent photothermal conversion performance and exceptional thermal management capability were obtained by using boron nitride/copper oxide@multi-walled carbon nanotubes (BN/CuO@MWCNTs) as the thermal conductive and photothermal conversion enhancement fillers. The results indicate that owing to the bridging effect, the introduction of CuO and MWCNTs on the BN surface can construct additional heat transfer paths, resulting in a high thermal conductivity of up to 2.35 W/(m·K) for the as-prepared PEG/BN/CuO@MWCNTs composite, which is about 9-folds enhancement than pristine PEG. Simultaneously, the supercooling degree of PEG in PEG/BN/CuO@MWCNTs is effectively suppressed due to the synergistic nucleation effect of BN, CuO and MWCNTs. Additionally, the PEG/BN/CuO@MWCNTs composites not only exhibit a high latent-heat capacity of 154.5 J/g and a high photothermal conversion efficiency of 92.2 %, but also show favorable shape stability and durable reliability. This work offers a workable solution for the synergistic enhancement of photothermal conversion and thermal management, which can effectively promote the practical application in solar energy conversion and storage.</p></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"17 11","pages":"Article 105997"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S187853522400399X/pdfft?md5=5803f172eeea4264663d5729d6233e3a&pid=1-s2.0-S187853522400399X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fabrication of boron nitride/copper oxide@multi-walled carbon nanotubes composites for enhancing heat transfer and photothermal conversion of phase change materials\",\"authors\":\"Weifang Han , Deyi Liu , Guoliang Wang , Suliang Li , En You , Zhengfeng Jia , Yuchao Li\",\"doi\":\"10.1016/j.arabjc.2024.105997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To realize the efficient storage and conversion of solar energy by phase change materials (PCMs), low photothermal conversion efficiency and poor heat transfer performance remain great challenges. Herein, polyethylene glycol (PEG)-based composite PCMs with excellent photothermal conversion performance and exceptional thermal management capability were obtained by using boron nitride/copper oxide@multi-walled carbon nanotubes (BN/CuO@MWCNTs) as the thermal conductive and photothermal conversion enhancement fillers. The results indicate that owing to the bridging effect, the introduction of CuO and MWCNTs on the BN surface can construct additional heat transfer paths, resulting in a high thermal conductivity of up to 2.35 W/(m·K) for the as-prepared PEG/BN/CuO@MWCNTs composite, which is about 9-folds enhancement than pristine PEG. Simultaneously, the supercooling degree of PEG in PEG/BN/CuO@MWCNTs is effectively suppressed due to the synergistic nucleation effect of BN, CuO and MWCNTs. Additionally, the PEG/BN/CuO@MWCNTs composites not only exhibit a high latent-heat capacity of 154.5 J/g and a high photothermal conversion efficiency of 92.2 %, but also show favorable shape stability and durable reliability. This work offers a workable solution for the synergistic enhancement of photothermal conversion and thermal management, which can effectively promote the practical application in solar energy conversion and storage.</p></div>\",\"PeriodicalId\":249,\"journal\":{\"name\":\"Arabian Journal of Chemistry\",\"volume\":\"17 11\",\"pages\":\"Article 105997\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S187853522400399X/pdfft?md5=5803f172eeea4264663d5729d6233e3a&pid=1-s2.0-S187853522400399X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S187853522400399X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187853522400399X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Fabrication of boron nitride/copper oxide@multi-walled carbon nanotubes composites for enhancing heat transfer and photothermal conversion of phase change materials
To realize the efficient storage and conversion of solar energy by phase change materials (PCMs), low photothermal conversion efficiency and poor heat transfer performance remain great challenges. Herein, polyethylene glycol (PEG)-based composite PCMs with excellent photothermal conversion performance and exceptional thermal management capability were obtained by using boron nitride/copper oxide@multi-walled carbon nanotubes (BN/CuO@MWCNTs) as the thermal conductive and photothermal conversion enhancement fillers. The results indicate that owing to the bridging effect, the introduction of CuO and MWCNTs on the BN surface can construct additional heat transfer paths, resulting in a high thermal conductivity of up to 2.35 W/(m·K) for the as-prepared PEG/BN/CuO@MWCNTs composite, which is about 9-folds enhancement than pristine PEG. Simultaneously, the supercooling degree of PEG in PEG/BN/CuO@MWCNTs is effectively suppressed due to the synergistic nucleation effect of BN, CuO and MWCNTs. Additionally, the PEG/BN/CuO@MWCNTs composites not only exhibit a high latent-heat capacity of 154.5 J/g and a high photothermal conversion efficiency of 92.2 %, but also show favorable shape stability and durable reliability. This work offers a workable solution for the synergistic enhancement of photothermal conversion and thermal management, which can effectively promote the practical application in solar energy conversion and storage.
期刊介绍:
The Arabian Journal of Chemistry is an English language, peer-reviewed scholarly publication in the area of chemistry. The Arabian Journal of Chemistry publishes original papers, reviews and short reports on, but not limited to: inorganic, physical, organic, analytical and biochemistry.
The Arabian Journal of Chemistry is issued by the Arab Union of Chemists and is published by King Saud University together with the Saudi Chemical Society in collaboration with Elsevier and is edited by an international group of eminent researchers.