带有喷流孔的矩形腔中的喷流阵列撞击传热

IF 7.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Mechanical Sciences Pub Date : 2024-09-08 DOI:10.1016/j.ijmecsci.2024.109698
{"title":"带有喷流孔的矩形腔中的喷流阵列撞击传热","authors":"","doi":"10.1016/j.ijmecsci.2024.109698","DOIUrl":null,"url":null,"abstract":"<div><p>Various researchers have studied jet array impingement heat transfer in impingement/effusion cooling systems. However, there is a lack of research on impingement/effusion cooling systems installed within rectangular cavities that focus on the impact of the proximity of the jet hole to the cavity sidewalls on cooling performance. The main objective of this study is to investigate the flow and heat transfer characteristics of jet array impingement with effusion holes in a rectangular cavity, considering various spacings between the cavity sidewalls and the outermost jet hole. The design parameters in this study include the ratio of the jet hole pitch to jet hole diameter of 7.1, 10.0, and 16.7, and the ratio of the distance between the jet and impingement plates to jet hole diameter of 2, 6, and 10, with the Reynolds number based on the jet hole diameter ranging from 2500 to 15,000. Heat transfer characteristics in the stagnation region and wall jet region were examined using local Nusselt number distributions on the impingement surface, measured by liquid crystal thermography. The local Nusselt number was high in the stagnation region and decreased radially from the stagnation region as the wall jet region formed. The closer the outermost jet hole is to the sidewall, the higher the Nusselt number on the impingement surface near the sidewall. Moreover, the flow structure in the rectangular cavity was numerically investigated, and the velocity vectors and streamlines showed that primary and secondary vortices were generated in the middle of two neighboring jets and near the sidewall, respectively. This study also assessed previous average Nusselt number correlations. Based on experimentally determined average Nusselt number data with 54 center unit cells and 1296 side unit cells, new correlations to predict the average Nusselt number on the impingement surface in a rectangular cavity with effusion holes were developed.</p></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jet array impingement heat transfer in a rectangular cavity with effusion holes\",\"authors\":\"\",\"doi\":\"10.1016/j.ijmecsci.2024.109698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Various researchers have studied jet array impingement heat transfer in impingement/effusion cooling systems. However, there is a lack of research on impingement/effusion cooling systems installed within rectangular cavities that focus on the impact of the proximity of the jet hole to the cavity sidewalls on cooling performance. The main objective of this study is to investigate the flow and heat transfer characteristics of jet array impingement with effusion holes in a rectangular cavity, considering various spacings between the cavity sidewalls and the outermost jet hole. The design parameters in this study include the ratio of the jet hole pitch to jet hole diameter of 7.1, 10.0, and 16.7, and the ratio of the distance between the jet and impingement plates to jet hole diameter of 2, 6, and 10, with the Reynolds number based on the jet hole diameter ranging from 2500 to 15,000. Heat transfer characteristics in the stagnation region and wall jet region were examined using local Nusselt number distributions on the impingement surface, measured by liquid crystal thermography. The local Nusselt number was high in the stagnation region and decreased radially from the stagnation region as the wall jet region formed. The closer the outermost jet hole is to the sidewall, the higher the Nusselt number on the impingement surface near the sidewall. Moreover, the flow structure in the rectangular cavity was numerically investigated, and the velocity vectors and streamlines showed that primary and secondary vortices were generated in the middle of two neighboring jets and near the sidewall, respectively. This study also assessed previous average Nusselt number correlations. Based on experimentally determined average Nusselt number data with 54 center unit cells and 1296 side unit cells, new correlations to predict the average Nusselt number on the impingement surface in a rectangular cavity with effusion holes were developed.</p></div>\",\"PeriodicalId\":56287,\"journal\":{\"name\":\"International Journal of Mechanical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020740324007392\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740324007392","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

许多研究人员都对撞击/扩散冷却系统中的射流阵列撞击传热进行了研究。然而,关于安装在矩形空腔内的撞击/喷射冷却系统的研究还很缺乏,研究的重点是喷射孔与空腔侧壁的距离对冷却性能的影响。本研究的主要目的是研究矩形空腔中带有喷射孔的喷射阵列撞击的流动和传热特性,同时考虑空腔侧壁与最外侧喷射孔之间的不同间距。本研究的设计参数包括:喷射孔间距与喷射孔直径之比为 7.1、10.0 和 16.7,喷射板和撞击板之间的距离与喷射孔直径之比为 2、6 和 10,基于喷射孔直径的雷诺数范围为 2500 到 15000。利用液晶热成像技术测量了撞击表面的局部努塞尔特数分布,从而检验了停滞区和壁面喷射区的传热特性。停滞区的局部努塞尔特数较高,随着壁面喷射区的形成,局部努塞尔特数从停滞区向径向降低。最外侧的喷射孔越靠近侧壁,侧壁附近撞击表面的努塞尔特数就越高。此外,还对矩形腔内的流动结构进行了数值研究,速度矢量和流线显示,在两个相邻射流的中间和侧壁附近分别产生了初级和次级涡流。这项研究还评估了以往的平均努塞尔特数相关性。根据实验测定的 54 个中心单元和 1296 个侧单元的平均努塞尔特数数据,建立了新的相关关系,用于预测带有喷流孔的矩形空腔中撞击表面的平均努塞尔特数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Jet array impingement heat transfer in a rectangular cavity with effusion holes

Various researchers have studied jet array impingement heat transfer in impingement/effusion cooling systems. However, there is a lack of research on impingement/effusion cooling systems installed within rectangular cavities that focus on the impact of the proximity of the jet hole to the cavity sidewalls on cooling performance. The main objective of this study is to investigate the flow and heat transfer characteristics of jet array impingement with effusion holes in a rectangular cavity, considering various spacings between the cavity sidewalls and the outermost jet hole. The design parameters in this study include the ratio of the jet hole pitch to jet hole diameter of 7.1, 10.0, and 16.7, and the ratio of the distance between the jet and impingement plates to jet hole diameter of 2, 6, and 10, with the Reynolds number based on the jet hole diameter ranging from 2500 to 15,000. Heat transfer characteristics in the stagnation region and wall jet region were examined using local Nusselt number distributions on the impingement surface, measured by liquid crystal thermography. The local Nusselt number was high in the stagnation region and decreased radially from the stagnation region as the wall jet region formed. The closer the outermost jet hole is to the sidewall, the higher the Nusselt number on the impingement surface near the sidewall. Moreover, the flow structure in the rectangular cavity was numerically investigated, and the velocity vectors and streamlines showed that primary and secondary vortices were generated in the middle of two neighboring jets and near the sidewall, respectively. This study also assessed previous average Nusselt number correlations. Based on experimentally determined average Nusselt number data with 54 center unit cells and 1296 side unit cells, new correlations to predict the average Nusselt number on the impingement surface in a rectangular cavity with effusion holes were developed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
期刊最新文献
Nonlinear dynamic behavior of a rotor-bearing system considering time-varying misalignment Energy absorption of the kirigami-inspired pyramid foldcore sandwich structures under low-velocity impact Modeling the coupled bubble-arc-droplet evolution in underwater flux-cored arc welding A GAN-based stepwise full-field mechanical prediction model for architected metamaterials Backward motion suppression in space-constrained piezoelectric pipeline robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1