大规模浮动聚丙烯腈混合微/纳米纤维膜通过光催化质子传输实现高效的氢/氘同位素分离

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Pub Date : 2024-09-19 DOI:10.1016/j.memsci.2024.123336
{"title":"大规模浮动聚丙烯腈混合微/纳米纤维膜通过光催化质子传输实现高效的氢/氘同位素分离","authors":"","doi":"10.1016/j.memsci.2024.123336","DOIUrl":null,"url":null,"abstract":"<div><p>Advancements in isotope separation are both essential and challenging. The separation of water isotopes is vital in industrial production, biopharmaceuticals, and healthcare applications. This process is energy-intensive and complex due to the similarity of the isotopes. Pure polyacrylonitrile (PAN) is resistant to proton permeability, but neutral hydrogen radicals are capable of penetration. In this study, we report a novel approach using PAN macroscopic hybrid micro-/nanofibers in combination with a photocatalyst to separate hydrogen ion isotopes. Application of photocatalytic water splitting to generate protons results in significantly slower deuteron permeation in these fibers relative to protons, resulting in a separation factor of approximately 15 at room temperature. The composite PAN fibers exhibit a conductivity of 17.5 mS cm<sup>−1</sup> at 25 °C and 95 % relative humidity. Our approach not only converts sunlight directly into storable hydrogen, but also enriches heavy water from H₂O/D₂O by H/D isotope separation. This study provides new insights into proton transport mechanisms in acidic media and demonstrates the significant potential of high molecular weight polymers for hydrogen isotope separation.</p></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":null,"pages":null},"PeriodicalIF":8.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-scale floating polyacrylonitrile hybrid micro-/nanofiber membrane achieves efficient H/D isotope separation via photocatalytic proton transport\",\"authors\":\"\",\"doi\":\"10.1016/j.memsci.2024.123336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Advancements in isotope separation are both essential and challenging. The separation of water isotopes is vital in industrial production, biopharmaceuticals, and healthcare applications. This process is energy-intensive and complex due to the similarity of the isotopes. Pure polyacrylonitrile (PAN) is resistant to proton permeability, but neutral hydrogen radicals are capable of penetration. In this study, we report a novel approach using PAN macroscopic hybrid micro-/nanofibers in combination with a photocatalyst to separate hydrogen ion isotopes. Application of photocatalytic water splitting to generate protons results in significantly slower deuteron permeation in these fibers relative to protons, resulting in a separation factor of approximately 15 at room temperature. The composite PAN fibers exhibit a conductivity of 17.5 mS cm<sup>−1</sup> at 25 °C and 95 % relative humidity. Our approach not only converts sunlight directly into storable hydrogen, but also enriches heavy water from H₂O/D₂O by H/D isotope separation. This study provides new insights into proton transport mechanisms in acidic media and demonstrates the significant potential of high molecular weight polymers for hydrogen isotope separation.</p></div>\",\"PeriodicalId\":368,\"journal\":{\"name\":\"Journal of Membrane Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037673882400930X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037673882400930X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

同位素分离技术的进步既重要又具有挑战性。水同位素分离在工业生产、生物制药和医疗保健应用中至关重要。由于同位素的相似性,这一过程既耗能又复杂。纯聚丙烯腈(PAN)具有抗质子渗透性,但中性氢自由基能够穿透。在本研究中,我们报告了一种利用 PAN 宏观混合微/纳米纤维与光催化剂相结合来分离氢离子同位素的新方法。应用光催化水分裂产生质子会导致氘核在这些纤维中的渗透速度明显慢于质子,从而在室温下产生约 15 的分离因子。在 25 °C 和 95% 相对湿度条件下,PAN 复合纤维的电导率为 17.5 mS cm-1。我们的方法不仅能将太阳光直接转化为可储存的氢,还能通过 H/D 同位素分离从 H₂O/D₂O 中富集重水。这项研究为了解酸性介质中的质子传输机制提供了新的视角,并证明了高分子量聚合物在氢同位素分离方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large-scale floating polyacrylonitrile hybrid micro-/nanofiber membrane achieves efficient H/D isotope separation via photocatalytic proton transport

Advancements in isotope separation are both essential and challenging. The separation of water isotopes is vital in industrial production, biopharmaceuticals, and healthcare applications. This process is energy-intensive and complex due to the similarity of the isotopes. Pure polyacrylonitrile (PAN) is resistant to proton permeability, but neutral hydrogen radicals are capable of penetration. In this study, we report a novel approach using PAN macroscopic hybrid micro-/nanofibers in combination with a photocatalyst to separate hydrogen ion isotopes. Application of photocatalytic water splitting to generate protons results in significantly slower deuteron permeation in these fibers relative to protons, resulting in a separation factor of approximately 15 at room temperature. The composite PAN fibers exhibit a conductivity of 17.5 mS cm−1 at 25 °C and 95 % relative humidity. Our approach not only converts sunlight directly into storable hydrogen, but also enriches heavy water from H₂O/D₂O by H/D isotope separation. This study provides new insights into proton transport mechanisms in acidic media and demonstrates the significant potential of high molecular weight polymers for hydrogen isotope separation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
期刊最新文献
Large-scale floating polyacrylonitrile hybrid micro-/nanofiber membrane achieves efficient H/D isotope separation via photocatalytic proton transport PTFE composite membrane with peroxymonosulfate activation self-cleaning for highly-efficient oil-water emulsion separation and dye degradation Fabrication of cellulose nanocrystals-incorporated dense Janus membranes for enhanced desalination and oily saline wastewater treatment via membrane distillation Additive-free preparation of hemodialysis membranes from silibinin-modified polysulfone polymer with enhanced performance in anti-oxidative stress and hemocompatibility Enhancement of antifouling and separation properties of poly(m-phenylene isophthalamide) hybrid ultrafiltration membrane using highly crystalline poly(heptazine imide) nanosheets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1