Miu Sato , Nahoko Yaguchi , Takuya Iijima , Aki Muramatsu , Liam Baird , Takafumi Suzuki , Masayuki Yamamoto
{"title":"KEAP1 的传感器系统可分别检测氧化和亲电压力 在体内","authors":"Miu Sato , Nahoko Yaguchi , Takuya Iijima , Aki Muramatsu , Liam Baird , Takafumi Suzuki , Masayuki Yamamoto","doi":"10.1016/j.redox.2024.103355","DOIUrl":null,"url":null,"abstract":"<div><p>In the KEAP1-NRF2 stress response system, KEAP1 acts as a sensor for oxidative and electrophilic stresses through formation of S–S bond and C–S bond, respectively. Of the many questions left related to the sensor activity, following three appear important; whether these KEAP1 sensor systems are operating <em>in vivo</em>, whether oxidative and electrophilic stresses are sensed by the similar or distinct systems, and how KEAP1 equips highly sensitive mechanisms detecting oxidative and electrophilic stresses <em>in vivo</em>. To address these questions, we conducted a series of analyses utilizing KEAP1-cysteine substitution mutant mice, conditional <em>selenocysteine-tRNA</em> (<em>Trsp</em>) knockout mice, and human cohort whole genome sequence (WGS) data. Firstly, the <em>Trsp</em>-knockout provokes severe deficiency of selenoproteins and compensatory activation of NRF2. However, mice lacking homozygously a pair of critical oxidative stress sensor cysteine residues of KEAP1 fail to activate NRF2 in the <em>Trsp</em>-knockout livers. Secondly, this study provides evidence for the differential utilization of KEAP1 sensors for oxidative and electrophilic stresses <em>in vivo</em>. Thirdly, theoretical calculations show that the KEAP1 dimer equips quite sensitive sensor machinery in which modification of a single molecule of KEAP1 within the dimer is sufficient to affect the activity. WGS examinations of rare variants identified seven non-synonymous variants in the oxidative stress sensors in human KEAP1, while no variant was found in electrophilic sensor cysteine residues, supporting the fail-safe nature of the KEAP1 oxidative stress sensor activity. These results provide valuable information for our understanding how mammals respond to oxidative and electrophilic stresses efficiently.</p></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"77 ","pages":"Article 103355"},"PeriodicalIF":10.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213231724003331/pdfft?md5=9b6806c28b388417fc54d65d0c3f7862&pid=1-s2.0-S2213231724003331-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sensor systems of KEAP1 uniquely detecting oxidative and electrophilic stresses separately In vivo\",\"authors\":\"Miu Sato , Nahoko Yaguchi , Takuya Iijima , Aki Muramatsu , Liam Baird , Takafumi Suzuki , Masayuki Yamamoto\",\"doi\":\"10.1016/j.redox.2024.103355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the KEAP1-NRF2 stress response system, KEAP1 acts as a sensor for oxidative and electrophilic stresses through formation of S–S bond and C–S bond, respectively. Of the many questions left related to the sensor activity, following three appear important; whether these KEAP1 sensor systems are operating <em>in vivo</em>, whether oxidative and electrophilic stresses are sensed by the similar or distinct systems, and how KEAP1 equips highly sensitive mechanisms detecting oxidative and electrophilic stresses <em>in vivo</em>. To address these questions, we conducted a series of analyses utilizing KEAP1-cysteine substitution mutant mice, conditional <em>selenocysteine-tRNA</em> (<em>Trsp</em>) knockout mice, and human cohort whole genome sequence (WGS) data. Firstly, the <em>Trsp</em>-knockout provokes severe deficiency of selenoproteins and compensatory activation of NRF2. However, mice lacking homozygously a pair of critical oxidative stress sensor cysteine residues of KEAP1 fail to activate NRF2 in the <em>Trsp</em>-knockout livers. Secondly, this study provides evidence for the differential utilization of KEAP1 sensors for oxidative and electrophilic stresses <em>in vivo</em>. Thirdly, theoretical calculations show that the KEAP1 dimer equips quite sensitive sensor machinery in which modification of a single molecule of KEAP1 within the dimer is sufficient to affect the activity. WGS examinations of rare variants identified seven non-synonymous variants in the oxidative stress sensors in human KEAP1, while no variant was found in electrophilic sensor cysteine residues, supporting the fail-safe nature of the KEAP1 oxidative stress sensor activity. These results provide valuable information for our understanding how mammals respond to oxidative and electrophilic stresses efficiently.</p></div>\",\"PeriodicalId\":20998,\"journal\":{\"name\":\"Redox Biology\",\"volume\":\"77 \",\"pages\":\"Article 103355\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213231724003331/pdfft?md5=9b6806c28b388417fc54d65d0c3f7862&pid=1-s2.0-S2213231724003331-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213231724003331\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231724003331","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Sensor systems of KEAP1 uniquely detecting oxidative and electrophilic stresses separately In vivo
In the KEAP1-NRF2 stress response system, KEAP1 acts as a sensor for oxidative and electrophilic stresses through formation of S–S bond and C–S bond, respectively. Of the many questions left related to the sensor activity, following three appear important; whether these KEAP1 sensor systems are operating in vivo, whether oxidative and electrophilic stresses are sensed by the similar or distinct systems, and how KEAP1 equips highly sensitive mechanisms detecting oxidative and electrophilic stresses in vivo. To address these questions, we conducted a series of analyses utilizing KEAP1-cysteine substitution mutant mice, conditional selenocysteine-tRNA (Trsp) knockout mice, and human cohort whole genome sequence (WGS) data. Firstly, the Trsp-knockout provokes severe deficiency of selenoproteins and compensatory activation of NRF2. However, mice lacking homozygously a pair of critical oxidative stress sensor cysteine residues of KEAP1 fail to activate NRF2 in the Trsp-knockout livers. Secondly, this study provides evidence for the differential utilization of KEAP1 sensors for oxidative and electrophilic stresses in vivo. Thirdly, theoretical calculations show that the KEAP1 dimer equips quite sensitive sensor machinery in which modification of a single molecule of KEAP1 within the dimer is sufficient to affect the activity. WGS examinations of rare variants identified seven non-synonymous variants in the oxidative stress sensors in human KEAP1, while no variant was found in electrophilic sensor cysteine residues, supporting the fail-safe nature of the KEAP1 oxidative stress sensor activity. These results provide valuable information for our understanding how mammals respond to oxidative and electrophilic stresses efficiently.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.