{"title":"连接蛋白 43 通过 TGFβ1-Smad3 介导的 αV 信号轴控制三阴性乳腺癌的转移行为 基于光学图像诊断的研究","authors":"","doi":"10.1016/j.slast.2024.100190","DOIUrl":null,"url":null,"abstract":"<div><p>Abnormal expression of connexin 43 (Cx43) contributes to the development and progression of cancer. However, its regulation is complex and dependent on the environment. The expression of Cx43 in triple-negative cancer lesions was analyzed by immunohistochemistry and optical coherence tomography using experimental models and clinical samples. The model of TGFβ1-SMad3-in-αv signal axis was established and verified by experiments. The results show that Cx43 plays a key role in the regulation of triple-negative cancer metastasis. <em>In vivo</em>, over-expressed Cx43 decreased tumor volume and inhibited ITGαV, TGF-β1, Smad3 and N-cadherin expressions, but enhanced the E-cadherin. Cx43 had the lowest expression in the TNBC samples, especially in lymph node metastatic TNBC patients and had a negative correlation with ITG alpha V, TGF-β1 and Smad3.The study demonstrated Cx43 controlled metastatic behavior through TGF-β1 -Smad3-ITG αV signaling axis in MDA-MB-231 cells, providing evidence for Cx43’s function in TNBC. The optical image diagnosis method can realize the identification and quantitative evaluation of early cancer triple negative, and provide a new strategy and means for the treatment of cancer triple negative.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630324000724/pdfft?md5=078cde3938fa2345741f49254d0dc81a&pid=1-s2.0-S2472630324000724-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Connexin 43 controls metastatic behavior in triple negative breast cancer through TGFβ1-Smad3-intergin αV signaling axis Based on optical image diagnosis\",\"authors\":\"\",\"doi\":\"10.1016/j.slast.2024.100190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Abnormal expression of connexin 43 (Cx43) contributes to the development and progression of cancer. However, its regulation is complex and dependent on the environment. The expression of Cx43 in triple-negative cancer lesions was analyzed by immunohistochemistry and optical coherence tomography using experimental models and clinical samples. The model of TGFβ1-SMad3-in-αv signal axis was established and verified by experiments. The results show that Cx43 plays a key role in the regulation of triple-negative cancer metastasis. <em>In vivo</em>, over-expressed Cx43 decreased tumor volume and inhibited ITGαV, TGF-β1, Smad3 and N-cadherin expressions, but enhanced the E-cadherin. Cx43 had the lowest expression in the TNBC samples, especially in lymph node metastatic TNBC patients and had a negative correlation with ITG alpha V, TGF-β1 and Smad3.The study demonstrated Cx43 controlled metastatic behavior through TGF-β1 -Smad3-ITG αV signaling axis in MDA-MB-231 cells, providing evidence for Cx43’s function in TNBC. The optical image diagnosis method can realize the identification and quantitative evaluation of early cancer triple negative, and provide a new strategy and means for the treatment of cancer triple negative.</p></div>\",\"PeriodicalId\":54248,\"journal\":{\"name\":\"SLAS Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2472630324000724/pdfft?md5=078cde3938fa2345741f49254d0dc81a&pid=1-s2.0-S2472630324000724-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472630324000724\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630324000724","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Connexin 43 controls metastatic behavior in triple negative breast cancer through TGFβ1-Smad3-intergin αV signaling axis Based on optical image diagnosis
Abnormal expression of connexin 43 (Cx43) contributes to the development and progression of cancer. However, its regulation is complex and dependent on the environment. The expression of Cx43 in triple-negative cancer lesions was analyzed by immunohistochemistry and optical coherence tomography using experimental models and clinical samples. The model of TGFβ1-SMad3-in-αv signal axis was established and verified by experiments. The results show that Cx43 plays a key role in the regulation of triple-negative cancer metastasis. In vivo, over-expressed Cx43 decreased tumor volume and inhibited ITGαV, TGF-β1, Smad3 and N-cadherin expressions, but enhanced the E-cadherin. Cx43 had the lowest expression in the TNBC samples, especially in lymph node metastatic TNBC patients and had a negative correlation with ITG alpha V, TGF-β1 and Smad3.The study demonstrated Cx43 controlled metastatic behavior through TGF-β1 -Smad3-ITG αV signaling axis in MDA-MB-231 cells, providing evidence for Cx43’s function in TNBC. The optical image diagnosis method can realize the identification and quantitative evaluation of early cancer triple negative, and provide a new strategy and means for the treatment of cancer triple negative.
期刊介绍:
SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.