确定用于土壤侵蚀调查的 Kamphorst 降雨模拟器的特性

IF 5.9 1区 地球科学 Q1 ENGINEERING, CIVIL Journal of Hydrology Pub Date : 2024-09-16 DOI:10.1016/j.jhydrol.2024.132025
{"title":"确定用于土壤侵蚀调查的 Kamphorst 降雨模拟器的特性","authors":"","doi":"10.1016/j.jhydrol.2024.132025","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the results of the characterization of Kamphorst’s rainfall simulator obtained by laboratory experiments carried out at the Department of Agricultural, Food, and Forest Sciences of the University of Palermo, are presented. At first, the rainfall uniformity distribution was positively verified considering several pressure heads (ranging from 1.9 cm to 11.9 cm) and water temperatures (from 24 °C to 27 °C), achieving a uniformity coefficient ranging from 96 to 99 %. Then, using a single nozzle, the simulator has been characterized in terms of kinetic power and momentum by applying both a photographic and a weighing technique. In particular, terminal drop velocity was measured by the displacement of a single raindrop measured between two consecutive frames, while the mean mass of single drops was evaluated by weighing a fixed number of drops. The analysis of the experimental data highlighted that the rainfall intensity, which increases with water temperature and pressure head, is the variable affecting the measurement of the single raindrop mass. Measurements also showed that an increase in rainfall intensity determines a decrease in the mean mass of the raindrops and an increase in the number of raindrops that fall in the unit time and area. This circumstance allowed to justify the increasing trend of the rainfall kinetic power and momentum with rainfall intensity. The measurements allowed to develop empirical relationships relating kinetic power and momentum with the simulated rainfall intensity and falling height of the raindrops. Finally, a theoretical expression suggested in the literature for estimating simulated rainfall intensity was positively tested.</p></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022169424014215/pdfft?md5=7a25209efd45bd753029d275f887e0c9&pid=1-s2.0-S0022169424014215-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Characterizing the Kamphorst rainfall simulator for soil erosion investigations\",\"authors\":\"\",\"doi\":\"10.1016/j.jhydrol.2024.132025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the results of the characterization of Kamphorst’s rainfall simulator obtained by laboratory experiments carried out at the Department of Agricultural, Food, and Forest Sciences of the University of Palermo, are presented. At first, the rainfall uniformity distribution was positively verified considering several pressure heads (ranging from 1.9 cm to 11.9 cm) and water temperatures (from 24 °C to 27 °C), achieving a uniformity coefficient ranging from 96 to 99 %. Then, using a single nozzle, the simulator has been characterized in terms of kinetic power and momentum by applying both a photographic and a weighing technique. In particular, terminal drop velocity was measured by the displacement of a single raindrop measured between two consecutive frames, while the mean mass of single drops was evaluated by weighing a fixed number of drops. The analysis of the experimental data highlighted that the rainfall intensity, which increases with water temperature and pressure head, is the variable affecting the measurement of the single raindrop mass. Measurements also showed that an increase in rainfall intensity determines a decrease in the mean mass of the raindrops and an increase in the number of raindrops that fall in the unit time and area. This circumstance allowed to justify the increasing trend of the rainfall kinetic power and momentum with rainfall intensity. The measurements allowed to develop empirical relationships relating kinetic power and momentum with the simulated rainfall intensity and falling height of the raindrops. Finally, a theoretical expression suggested in the literature for estimating simulated rainfall intensity was positively tested.</p></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022169424014215/pdfft?md5=7a25209efd45bd753029d275f887e0c9&pid=1-s2.0-S0022169424014215-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022169424014215\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169424014215","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了巴勒莫大学农业、食品和森林科学系通过实验室实验获得的 Kamphorst 降雨模拟器的鉴定结果。首先,根据不同的压头(从 1.9 厘米到 11.9 厘米不等)和水温(从 24 °C 到 27 °C),对降雨的均匀分布进行了积极的验证,达到了 96% 到 99% 的均匀系数。然后,使用单个喷嘴,通过照相和称重技术对模拟器的动能和动量进行了表征。其中,末端水滴速度是通过测量两个连续帧之间单个水滴的位移来测量的,而单个水滴的平均质量则是通过称量固定数量的水滴来评估的。对实验数据的分析突出表明,降雨强度是影响单个雨滴质量测量的变量,它随水温和压头的增加而增加。测量结果还表明,降雨强度的增加决定了雨滴平均质量的减少,以及单位时间和单位面积内降下的雨滴数量的增加。这种情况证明了降雨动能和动量随降雨强度的增加而增加的趋势。通过测量,可以建立动能和动量与模拟降雨强度和雨滴下落高度之间的经验关系。最后,对文献中提出的估算模拟降雨强度的理论表达式进行了正面检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterizing the Kamphorst rainfall simulator for soil erosion investigations

In this paper, the results of the characterization of Kamphorst’s rainfall simulator obtained by laboratory experiments carried out at the Department of Agricultural, Food, and Forest Sciences of the University of Palermo, are presented. At first, the rainfall uniformity distribution was positively verified considering several pressure heads (ranging from 1.9 cm to 11.9 cm) and water temperatures (from 24 °C to 27 °C), achieving a uniformity coefficient ranging from 96 to 99 %. Then, using a single nozzle, the simulator has been characterized in terms of kinetic power and momentum by applying both a photographic and a weighing technique. In particular, terminal drop velocity was measured by the displacement of a single raindrop measured between two consecutive frames, while the mean mass of single drops was evaluated by weighing a fixed number of drops. The analysis of the experimental data highlighted that the rainfall intensity, which increases with water temperature and pressure head, is the variable affecting the measurement of the single raindrop mass. Measurements also showed that an increase in rainfall intensity determines a decrease in the mean mass of the raindrops and an increase in the number of raindrops that fall in the unit time and area. This circumstance allowed to justify the increasing trend of the rainfall kinetic power and momentum with rainfall intensity. The measurements allowed to develop empirical relationships relating kinetic power and momentum with the simulated rainfall intensity and falling height of the raindrops. Finally, a theoretical expression suggested in the literature for estimating simulated rainfall intensity was positively tested.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
期刊最新文献
Generation of root zone soil moisture from the integration of an all-weather satellite surface soil moisture estimates and an analytical model: A preliminary result in China DRSTF: A hybrid-approach framework for reservoir water temperature forecasting considering operation response Development of a modular distributed hydro-thermal coupled hydrological model for cold regions Vegetation greening mitigates the positive impacts of climate change on water availability in Northwest China Impacts of changing weather patterns on the dynamics of water pollutants in agricultural catchments: Insights from 11-year high temporal resolution data analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1