关于在新时域观测到的宇宙射线时间演变

IF 3.1 2区 物理与天体物理 Q1 ENGINEERING, AEROSPACE Acta Astronautica Pub Date : 2024-09-18 DOI:10.1016/j.actaastro.2024.09.034
{"title":"关于在新时域观测到的宇宙射线时间演变","authors":"","doi":"10.1016/j.actaastro.2024.09.034","DOIUrl":null,"url":null,"abstract":"<div><p>Since the 1990's, it has been recognized that the full explanation of cosmic rays (CR) and their spectrum may require some new physics. The debate on the origin of CR has led to the conclusion that while most CR come from supernova explosions in the Galaxy, CR with very high energies are likely of extragalactic origin. However, a response to several open questions, still unanswered, concerning CR above 10<sup>13</sup> eV is required. We herewith study the temporal evolution of the observational CR using data collected by several stations of the ground-based network. The obtained result states that the power spectral density of the CR temporal evolution, especially with a frequency less than 0.1 Hz, exhibits the Kolmogorov-Obukhov 5/3 law that exhibits the energy spectrum of many geophysical quantities. Any small difference found from the 5/3 exponent can be attributed to intermittency corrections and the stations' characteristics. Moreover, natural time analysis applied to the CR time series showed the critical role of the quasi-biennial oscillation to the entropy maximization which occurs following the 5/3 Kolmogorov-Obukhov power law. These findings can be used to more reliably predict extreme CR events that could have an impact even at the molecular level.</p></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the observed time evolution of cosmic rays in a new time domain\",\"authors\":\"\",\"doi\":\"10.1016/j.actaastro.2024.09.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Since the 1990's, it has been recognized that the full explanation of cosmic rays (CR) and their spectrum may require some new physics. The debate on the origin of CR has led to the conclusion that while most CR come from supernova explosions in the Galaxy, CR with very high energies are likely of extragalactic origin. However, a response to several open questions, still unanswered, concerning CR above 10<sup>13</sup> eV is required. We herewith study the temporal evolution of the observational CR using data collected by several stations of the ground-based network. The obtained result states that the power spectral density of the CR temporal evolution, especially with a frequency less than 0.1 Hz, exhibits the Kolmogorov-Obukhov 5/3 law that exhibits the energy spectrum of many geophysical quantities. Any small difference found from the 5/3 exponent can be attributed to intermittency corrections and the stations' characteristics. Moreover, natural time analysis applied to the CR time series showed the critical role of the quasi-biennial oscillation to the entropy maximization which occurs following the 5/3 Kolmogorov-Obukhov power law. These findings can be used to more reliably predict extreme CR events that could have an impact even at the molecular level.</p></div>\",\"PeriodicalId\":44971,\"journal\":{\"name\":\"Acta Astronautica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Astronautica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094576524005344\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576524005344","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

自 20 世纪 90 年代以来,人们认识到要全面解释宇宙射线(CR)及其光谱可能需要一些新的物理学方法。关于宇宙射线起源的争论得出的结论是,虽然大多数宇宙射线来自银河系中的超新星爆炸,但能量非常高的宇宙射线很可能来自银河系外。然而,关于 1013 eV 以上的 CR,有几个悬而未决的问题需要回答。在此,我们利用地基网络几个观测站收集到的数据,研究了观测到的 CR 的时间演变。研究结果表明,CR 时间演变的功率谱密度,尤其是频率小于 0.1 Hz 的功率谱密度,呈现出柯尔莫哥洛夫-奥布霍夫 5/3 规律,而这一规律与许多地球物理量的能量谱相吻合。与 5/3 指数的任何微小差异都可归因于间歇修正和台站特性。此外,对 CR 时间序列进行的自然时间分析表明,准双年振荡对 5/3 柯尔莫哥洛夫-奥布霍夫幂律之后发生的熵最大化起着关键作用。这些发现可用于更可靠地预测甚至会在分子水平上产生影响的极端 CR 事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the observed time evolution of cosmic rays in a new time domain

Since the 1990's, it has been recognized that the full explanation of cosmic rays (CR) and their spectrum may require some new physics. The debate on the origin of CR has led to the conclusion that while most CR come from supernova explosions in the Galaxy, CR with very high energies are likely of extragalactic origin. However, a response to several open questions, still unanswered, concerning CR above 1013 eV is required. We herewith study the temporal evolution of the observational CR using data collected by several stations of the ground-based network. The obtained result states that the power spectral density of the CR temporal evolution, especially with a frequency less than 0.1 Hz, exhibits the Kolmogorov-Obukhov 5/3 law that exhibits the energy spectrum of many geophysical quantities. Any small difference found from the 5/3 exponent can be attributed to intermittency corrections and the stations' characteristics. Moreover, natural time analysis applied to the CR time series showed the critical role of the quasi-biennial oscillation to the entropy maximization which occurs following the 5/3 Kolmogorov-Obukhov power law. These findings can be used to more reliably predict extreme CR events that could have an impact even at the molecular level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Astronautica
Acta Astronautica 工程技术-工程:宇航
CiteScore
7.20
自引率
22.90%
发文量
599
审稿时长
53 days
期刊介绍: Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to: The peaceful scientific exploration of space, Its exploitation for human welfare and progress, Conception, design, development and operation of space-borne and Earth-based systems, In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.
期刊最新文献
Evaluating potential landing sites for the Artemis III mission using a multi-criteria decision making approach Satellite surface charging in LEO with ProPIC Exploring potential candidates of alternative solid hydrocarbon propellants for cold-gas thrusters Mesenchymal stem cell transplant as an intervention to ameliorate disuse-induced muscle atrophy in a mouse model of simulated microgravity DIANA: An underwater analog space mission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1