揭示带有硬碳或金属钠阳极的醚基电解质在高性能钠离子电池中的阴离子稳定性

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-09-18 DOI:10.1016/j.jcis.2024.09.141
{"title":"揭示带有硬碳或金属钠阳极的醚基电解质在高性能钠离子电池中的阴离子稳定性","authors":"","doi":"10.1016/j.jcis.2024.09.141","DOIUrl":null,"url":null,"abstract":"<div><p>In hard carbon (HC) anodes, elucidating the relationship between the solid electrolyte interphase formation and the solvated Na<sup>+</sup> co-intercalation mechanism is crucial, particularly considering different anionic salts in ether-based electrolytes. Here, we comprehensively explore the impact of different anionic salts on the electrochemical performance of HC/Na half-cell and elucidate the underlying mechanism through experimental studies and theoretical calculations. The surface morphology of the HC anode and its interphasial property are further investigated to evaluate the differences endowed by the presence of various anionic salts in diglyme (2G). The HC/Na half-cells with NaPF<sub>6</sub>-2G and sodium trifluoromethanesulfonate (NaCF<sub>3</sub>SO<sub>3</sub>)-2G display superior electrochemical performance with faster kinetics and lower interfacial resistance than those with NaClO<sub>4</sub>-2G, sodium bis-(fluorosulfonyl) imide (NaFSI)-2G and sodium bis-(trifluoromethanesulfonyl) imide (NaTFSI)-2G. NaClO<sub>4</sub>-2G forms a relatively thick interphase layer with high resistance at the electrode/electrolyte interface owing to its insufficient stability. NaFSI-2G and NaTFSI-2G exhibit severe side reactions with Na metal, producing a thick interphase layer on the HC surface with high interfacial resistance from excess electrolyte decomposition, thus deteriorating the electrochemical performance. In summary, the study on the stability of different anionic salts in ether-based electrolyte for the HC anode with the intercalation mechanism provides valuable insights for screening appropriate conductive salts for high-performance sodium-ion batteries, especially when considering Na metal counter/reference electrodes.</p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unravelling the anionic stability of an ether-based electrolyte with a hard carbon or metallic sodium anode for high-performance sodium-ion batteries\",\"authors\":\"\",\"doi\":\"10.1016/j.jcis.2024.09.141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In hard carbon (HC) anodes, elucidating the relationship between the solid electrolyte interphase formation and the solvated Na<sup>+</sup> co-intercalation mechanism is crucial, particularly considering different anionic salts in ether-based electrolytes. Here, we comprehensively explore the impact of different anionic salts on the electrochemical performance of HC/Na half-cell and elucidate the underlying mechanism through experimental studies and theoretical calculations. The surface morphology of the HC anode and its interphasial property are further investigated to evaluate the differences endowed by the presence of various anionic salts in diglyme (2G). The HC/Na half-cells with NaPF<sub>6</sub>-2G and sodium trifluoromethanesulfonate (NaCF<sub>3</sub>SO<sub>3</sub>)-2G display superior electrochemical performance with faster kinetics and lower interfacial resistance than those with NaClO<sub>4</sub>-2G, sodium bis-(fluorosulfonyl) imide (NaFSI)-2G and sodium bis-(trifluoromethanesulfonyl) imide (NaTFSI)-2G. NaClO<sub>4</sub>-2G forms a relatively thick interphase layer with high resistance at the electrode/electrolyte interface owing to its insufficient stability. NaFSI-2G and NaTFSI-2G exhibit severe side reactions with Na metal, producing a thick interphase layer on the HC surface with high interfacial resistance from excess electrolyte decomposition, thus deteriorating the electrochemical performance. In summary, the study on the stability of different anionic salts in ether-based electrolyte for the HC anode with the intercalation mechanism provides valuable insights for screening appropriate conductive salts for high-performance sodium-ion batteries, especially when considering Na metal counter/reference electrodes.</p></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979724022069\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724022069","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在硬碳(HC)阳极中,阐明固体电解质相间形成与溶解 Na+ 共渗机制之间的关系至关重要,特别是考虑到醚基电解质中的不同阴离子盐。在此,我们通过实验研究和理论计算,全面探讨了不同阴离子盐对 HC/Na 半电池电化学性能的影响,并阐明了其基本机制。我们进一步研究了碳氢化合物阳极的表面形貌及其相间特性,以评估二甘醇(2G)中各种阴离子盐的存在所带来的差异。与 NaClO4-2G、双(氟磺酰)亚胺钠(NaFSI)-2G 和双(三氟甲磺酰)亚胺钠(NaTFSI)-2G 相比,含有 NaPF6-2G 和三氟甲磺酸钠(NaCF3SO3)-2G 的 HC/Na 半电池具有更快的动力学速度和更低的界面电阻,显示出更优越的电化学性能。NaClO4-2G 由于不够稳定,会在电极/电解质界面形成相对较厚的相间层,电阻较高。NaFSI-2G 和 NaTFSI-2G 与 Na 金属发生了严重的副反应,在 HC 表面产生了较厚的相间层,过量电解质分解产生了较高的界面电阻,从而降低了电化学性能。总之,利用插层机理研究不同阴离子盐在醚基电解质中对碳氢化合物阳极的稳定性,为高性能钠离子电池筛选合适的导电盐提供了有价值的见解,尤其是在考虑 Na 金属对/参比电极时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unravelling the anionic stability of an ether-based electrolyte with a hard carbon or metallic sodium anode for high-performance sodium-ion batteries

In hard carbon (HC) anodes, elucidating the relationship between the solid electrolyte interphase formation and the solvated Na+ co-intercalation mechanism is crucial, particularly considering different anionic salts in ether-based electrolytes. Here, we comprehensively explore the impact of different anionic salts on the electrochemical performance of HC/Na half-cell and elucidate the underlying mechanism through experimental studies and theoretical calculations. The surface morphology of the HC anode and its interphasial property are further investigated to evaluate the differences endowed by the presence of various anionic salts in diglyme (2G). The HC/Na half-cells with NaPF6-2G and sodium trifluoromethanesulfonate (NaCF3SO3)-2G display superior electrochemical performance with faster kinetics and lower interfacial resistance than those with NaClO4-2G, sodium bis-(fluorosulfonyl) imide (NaFSI)-2G and sodium bis-(trifluoromethanesulfonyl) imide (NaTFSI)-2G. NaClO4-2G forms a relatively thick interphase layer with high resistance at the electrode/electrolyte interface owing to its insufficient stability. NaFSI-2G and NaTFSI-2G exhibit severe side reactions with Na metal, producing a thick interphase layer on the HC surface with high interfacial resistance from excess electrolyte decomposition, thus deteriorating the electrochemical performance. In summary, the study on the stability of different anionic salts in ether-based electrolyte for the HC anode with the intercalation mechanism provides valuable insights for screening appropriate conductive salts for high-performance sodium-ion batteries, especially when considering Na metal counter/reference electrodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Mo2C-Co heterostructure with carbon nanosheets decorated carbon microtubules: Different means for high-performance lithium-sulfur batteries. Multiple-perspective design of hollow-structured cerium-vanadium-based nanopillar arrays for enhanced overall water electrolysis. NIR responsive nanosystem based on upconversion nanoparticle-engineered bacteria for immune/photodynamic combined therapy with bacteria self-clearing capability Electron‐rich SnO2 promote CO2 activation for stable electrocatalytic CO2 reduction Unravelling the anionic stability of an ether-based electrolyte with a hard carbon or metallic sodium anode for high-performance sodium-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1