{"title":"氢化学平衡下非硬化金属的氢化物诱导脆化和断裂","authors":"A.G. Varias","doi":"10.1016/j.ijsolstr.2024.113073","DOIUrl":null,"url":null,"abstract":"<div><p>The stress field in the hydride precipitation zone is examined, under conditions of hydrogen chemical equilibrium and constant temperature, in the case of non-hardening metals, by applying slip-line theory. It is proven that the hydride precipitation zone, in any geometry, is a constant stress area. In this area, the principal stresses are equal to the respective principal stresses, before hydride precipitation, minus the difference of hydrostatic stress before and after hydride precipitation. The general relations are applied to the case of a stationary sharp mode-I plane-strain crack and the deviations from Prandtl-field are derived, in the [-π/4, +π/4] sector ahead of the tip, where hydrides precipitate. In this case, the hydride precipitation sector is characterized by a constant hydride volume fraction. In addition, hydride precipitation is associated with the development of elastic sectors along the crack faces and the reduction of the centered fan sectors; the relation between hydride precipitation zone stress trace and the extent of the centered fan sector is presented. The mode-I plane-strain blunted crack is also considered and the deviations from the logarithmic spiral slip-lines is discussed together with the reduction of hydride volume fraction as the blunted crack-tip is approached. A general fracture criterion, based on the strength of hydride platelets, is derived, which indicates that fracture occurs, when a critical hydride precipitation zone stress trace dominates. The criterion is applied, under the condition of a dominant K-field annulus, surrounding the plastic zone, and the estimated threshold stress intensity factor of delayed hydride cracking correlates favorably with experimental measurements.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"305 ","pages":"Article 113073"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydride induced embrittlement and fracture of non-hardening metals under hydrogen chemical equilibrium\",\"authors\":\"A.G. Varias\",\"doi\":\"10.1016/j.ijsolstr.2024.113073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The stress field in the hydride precipitation zone is examined, under conditions of hydrogen chemical equilibrium and constant temperature, in the case of non-hardening metals, by applying slip-line theory. It is proven that the hydride precipitation zone, in any geometry, is a constant stress area. In this area, the principal stresses are equal to the respective principal stresses, before hydride precipitation, minus the difference of hydrostatic stress before and after hydride precipitation. The general relations are applied to the case of a stationary sharp mode-I plane-strain crack and the deviations from Prandtl-field are derived, in the [-π/4, +π/4] sector ahead of the tip, where hydrides precipitate. In this case, the hydride precipitation sector is characterized by a constant hydride volume fraction. In addition, hydride precipitation is associated with the development of elastic sectors along the crack faces and the reduction of the centered fan sectors; the relation between hydride precipitation zone stress trace and the extent of the centered fan sector is presented. The mode-I plane-strain blunted crack is also considered and the deviations from the logarithmic spiral slip-lines is discussed together with the reduction of hydride volume fraction as the blunted crack-tip is approached. A general fracture criterion, based on the strength of hydride platelets, is derived, which indicates that fracture occurs, when a critical hydride precipitation zone stress trace dominates. The criterion is applied, under the condition of a dominant K-field annulus, surrounding the plastic zone, and the estimated threshold stress intensity factor of delayed hydride cracking correlates favorably with experimental measurements.</p></div>\",\"PeriodicalId\":14311,\"journal\":{\"name\":\"International Journal of Solids and Structures\",\"volume\":\"305 \",\"pages\":\"Article 113073\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020768324004323\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324004323","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
摘要
在氢化学平衡和恒温条件下,通过应用滑移线理论,研究了非硬化金属氢化物析出区的应力场。研究证明,氢化物析出区在任何几何形状下都是一个恒定应力区。在该区域,主应力等于氢化物析出前各自的主应力减去氢化物析出前后的静水压力差。将一般关系应用于静止尖锐模态 I 平面应变裂纹的情况,并推导出在氢化物析出的尖端前方 [-π/4, +π/4] 区域与普朗特场的偏差。在这种情况下,氢化物析出区的特点是氢化物体积分数恒定。此外,氢化物析出还与沿裂纹面弹性扇形区的发展和中心扇形区的减小有关;本文介绍了氢化物析出区应力轨迹与中心扇形区范围之间的关系。此外,还考虑了模式 I 平面应变钝化裂纹,并讨论了对数螺旋滑移线的偏差,以及钝化裂纹顶端接近时氢化物体积分数的减少。根据氢化物板块的强度,得出了一般断裂准则,该准则表明,当临界氢化物析出区应力轨迹占主导地位时,就会发生断裂。该标准是在塑性区周围的 K 场环带占主导地位的条件下应用的,延迟氢化物裂纹的估计临界应力强度因子与实验测量结果密切相关。
Hydride induced embrittlement and fracture of non-hardening metals under hydrogen chemical equilibrium
The stress field in the hydride precipitation zone is examined, under conditions of hydrogen chemical equilibrium and constant temperature, in the case of non-hardening metals, by applying slip-line theory. It is proven that the hydride precipitation zone, in any geometry, is a constant stress area. In this area, the principal stresses are equal to the respective principal stresses, before hydride precipitation, minus the difference of hydrostatic stress before and after hydride precipitation. The general relations are applied to the case of a stationary sharp mode-I plane-strain crack and the deviations from Prandtl-field are derived, in the [-π/4, +π/4] sector ahead of the tip, where hydrides precipitate. In this case, the hydride precipitation sector is characterized by a constant hydride volume fraction. In addition, hydride precipitation is associated with the development of elastic sectors along the crack faces and the reduction of the centered fan sectors; the relation between hydride precipitation zone stress trace and the extent of the centered fan sector is presented. The mode-I plane-strain blunted crack is also considered and the deviations from the logarithmic spiral slip-lines is discussed together with the reduction of hydride volume fraction as the blunted crack-tip is approached. A general fracture criterion, based on the strength of hydride platelets, is derived, which indicates that fracture occurs, when a critical hydride precipitation zone stress trace dominates. The criterion is applied, under the condition of a dominant K-field annulus, surrounding the plastic zone, and the estimated threshold stress intensity factor of delayed hydride cracking correlates favorably with experimental measurements.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.