Yu Ji , Hongwei Zhang , Jingyu Pang , Zhenqiang Xing , Long Zhang , Zhengwang Zhu , Aimin Wang , Haifeng Zhang
{"title":"Ti/Al 比率对 Fe3.75Cr1.25NiAl0.6-xTix 高熵合金析出物演变的影响及其对拉伸性能的影响","authors":"Yu Ji , Hongwei Zhang , Jingyu Pang , Zhenqiang Xing , Long Zhang , Zhengwang Zhu , Aimin Wang , Haifeng Zhang","doi":"10.1016/j.intermet.2024.108505","DOIUrl":null,"url":null,"abstract":"<div><p>The work developed a series of novel Co-free high-entropy alloys (HEAs), i.e. Fe<sub>3.75</sub>Cr<sub>1.25</sub>NiAl<sub>0.6-<em>x</em></sub>Ti<sub><em>x</em></sub> (<em>x</em> = 0, 0.15, 0.30 and 0.40, molar ratio) HEAs abbreviated as Ti0, Ti0.15, Ti0.30 and Ti0.40, respectively. The effects of Ti/Al ratio (Al partially replaced by Ti) on the microstructure and tensile properties were investigated systematically. The Ti0 HEA contains the FCC phase in dendritic regions and the BCC and B2 phases (BCC/B2) in interdendritic regions. Moreover, the spherical ordered B2 nanoparticles are embedded in the BCC matrix. With increasing the Ti/Al ratio from 0 to 1/3, there is a phase transition from B2-NiAl to L2<sub>1</sub>-Ni<sub>2</sub>AlTi. Furthermore, the morphology of the nanoparticles evolves from spherical to cuboidal. With further increasing the Ti/Al ratio from 1/3 to 1 and 2, the morphology of nanoparticles evolves from cuboidal back to spherical. In addition, the Ti0.40 HEA has <em>σ</em> phases besides FCC, BCC, and L2<sub>1</sub> phases. The analysis of tensile properties shows that properly adjusting Ti/Al ratios sharply improves the plasticity and slightly improves the ultimate strength, but only causes a limited decrease in the yield strength. Specifically, the Ti0.15 HEA has a superior combination of strength and plasticity, exhibiting a yield strength of 819 MPa, an ultimate strength of 1113 MPa, and a fracture strain of 13.4 %. The SRO, the solid-solution strengthening, the phase transformation, and the shape of nanoparticles were discussed in detail, which reveals the origins of the excellent tensile properties. In addition, the excessive addition of Ti forms the <em>σ</em> phase, leading to a serious brittleness.</p><p>These findings are believed to promote the development of low-cost HEAs with BCC/L2<sub>1</sub> for practical applications.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"175 ","pages":"Article 108505"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of Ti/Al ratios on the evolution of precipitates and their effects on tensile properties for Fe3.75Cr1.25NiAl0.6-xTix high entropy alloys\",\"authors\":\"Yu Ji , Hongwei Zhang , Jingyu Pang , Zhenqiang Xing , Long Zhang , Zhengwang Zhu , Aimin Wang , Haifeng Zhang\",\"doi\":\"10.1016/j.intermet.2024.108505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The work developed a series of novel Co-free high-entropy alloys (HEAs), i.e. Fe<sub>3.75</sub>Cr<sub>1.25</sub>NiAl<sub>0.6-<em>x</em></sub>Ti<sub><em>x</em></sub> (<em>x</em> = 0, 0.15, 0.30 and 0.40, molar ratio) HEAs abbreviated as Ti0, Ti0.15, Ti0.30 and Ti0.40, respectively. The effects of Ti/Al ratio (Al partially replaced by Ti) on the microstructure and tensile properties were investigated systematically. The Ti0 HEA contains the FCC phase in dendritic regions and the BCC and B2 phases (BCC/B2) in interdendritic regions. Moreover, the spherical ordered B2 nanoparticles are embedded in the BCC matrix. With increasing the Ti/Al ratio from 0 to 1/3, there is a phase transition from B2-NiAl to L2<sub>1</sub>-Ni<sub>2</sub>AlTi. Furthermore, the morphology of the nanoparticles evolves from spherical to cuboidal. With further increasing the Ti/Al ratio from 1/3 to 1 and 2, the morphology of nanoparticles evolves from cuboidal back to spherical. In addition, the Ti0.40 HEA has <em>σ</em> phases besides FCC, BCC, and L2<sub>1</sub> phases. The analysis of tensile properties shows that properly adjusting Ti/Al ratios sharply improves the plasticity and slightly improves the ultimate strength, but only causes a limited decrease in the yield strength. Specifically, the Ti0.15 HEA has a superior combination of strength and plasticity, exhibiting a yield strength of 819 MPa, an ultimate strength of 1113 MPa, and a fracture strain of 13.4 %. The SRO, the solid-solution strengthening, the phase transformation, and the shape of nanoparticles were discussed in detail, which reveals the origins of the excellent tensile properties. In addition, the excessive addition of Ti forms the <em>σ</em> phase, leading to a serious brittleness.</p><p>These findings are believed to promote the development of low-cost HEAs with BCC/L2<sub>1</sub> for practical applications.</p></div>\",\"PeriodicalId\":331,\"journal\":{\"name\":\"Intermetallics\",\"volume\":\"175 \",\"pages\":\"Article 108505\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intermetallics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966979524003248\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979524003248","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The effect of Ti/Al ratios on the evolution of precipitates and their effects on tensile properties for Fe3.75Cr1.25NiAl0.6-xTix high entropy alloys
The work developed a series of novel Co-free high-entropy alloys (HEAs), i.e. Fe3.75Cr1.25NiAl0.6-xTix (x = 0, 0.15, 0.30 and 0.40, molar ratio) HEAs abbreviated as Ti0, Ti0.15, Ti0.30 and Ti0.40, respectively. The effects of Ti/Al ratio (Al partially replaced by Ti) on the microstructure and tensile properties were investigated systematically. The Ti0 HEA contains the FCC phase in dendritic regions and the BCC and B2 phases (BCC/B2) in interdendritic regions. Moreover, the spherical ordered B2 nanoparticles are embedded in the BCC matrix. With increasing the Ti/Al ratio from 0 to 1/3, there is a phase transition from B2-NiAl to L21-Ni2AlTi. Furthermore, the morphology of the nanoparticles evolves from spherical to cuboidal. With further increasing the Ti/Al ratio from 1/3 to 1 and 2, the morphology of nanoparticles evolves from cuboidal back to spherical. In addition, the Ti0.40 HEA has σ phases besides FCC, BCC, and L21 phases. The analysis of tensile properties shows that properly adjusting Ti/Al ratios sharply improves the plasticity and slightly improves the ultimate strength, but only causes a limited decrease in the yield strength. Specifically, the Ti0.15 HEA has a superior combination of strength and plasticity, exhibiting a yield strength of 819 MPa, an ultimate strength of 1113 MPa, and a fracture strain of 13.4 %. The SRO, the solid-solution strengthening, the phase transformation, and the shape of nanoparticles were discussed in detail, which reveals the origins of the excellent tensile properties. In addition, the excessive addition of Ti forms the σ phase, leading to a serious brittleness.
These findings are believed to promote the development of low-cost HEAs with BCC/L21 for practical applications.
期刊介绍:
This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys.
The journal reports the science and engineering of metallic materials in the following aspects:
Theories and experiments which address the relationship between property and structure in all length scales.
Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations.
Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties.
Technological applications resulting from the understanding of property-structure relationship in materials.
Novel and cutting-edge results warranting rapid communication.
The journal also publishes special issues on selected topics and overviews by invitation only.