Sara Oliviero , Antonino A. La Mattina , Giacomo Savelli , Marco Viceconti
{"title":"预测髋部保护器预防髋部骨折疗效的硅学临床试验","authors":"Sara Oliviero , Antonino A. La Mattina , Giacomo Savelli , Marco Viceconti","doi":"10.1016/j.jbiomech.2024.112335","DOIUrl":null,"url":null,"abstract":"<div><p>Osteoporosis is characterized by loss of bone mineral density and increased fracture risk. Reduction of hip fracture incidence is of major clinical importance. Hip protectors aim to attenuate the impact force transmitted to the femur upon falling, however different conclusions on their efficacy have been reported; some authors suggest this may be due to differences in compliance. The aim of this study was to apply an <em>In Silico</em> trial methodology to predict the effectiveness of hip protectors and its dependence on compliance.</p><p>A cohort of 1044 virtual patients (Finite Element models of proximal femur) were generated. A Markov chain process was implemented to predict fracture incidence with and without hip protectors, by simulating different levels of compliance. At each simulated follow-up year, a Poisson distribution was randomly sampled to determine the number of falls sustained by each patient. Impact direction and force were stochastically sampled from a range of possible scenarios. The effect of wearing a hip protector was simulated by applying attenuation coefficients to the impact force (12.9 %, 19 % and 33.8 %, as reported for available devices). A patient was considered fractured when impact force exceeded the femur strength.</p><p>Without hip protector, virtual patients experienced 66 ± 5 fractures in 10 years. Wearing the three devices, fracture incidence was reduced to 43 ± 4, 35 ± 4 and 17 ± 2 respectively, at full compliance. As expected, effectiveness was dependent on compliance.</p><p>This <em>In Silico</em> trial technology can be applied in the future to test multiple interventions, optimise intervention strategies, improve clinical trial design and drug development.</p></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"176 ","pages":"Article 112335"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021929024004135/pdfft?md5=3a4fe634f56146bf7ef130db83fd5829&pid=1-s2.0-S0021929024004135-main.pdf","citationCount":"0","resultStr":"{\"title\":\"In Silico clinical trial to predict the efficacy of hip protectors for preventing hip fractures\",\"authors\":\"Sara Oliviero , Antonino A. La Mattina , Giacomo Savelli , Marco Viceconti\",\"doi\":\"10.1016/j.jbiomech.2024.112335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Osteoporosis is characterized by loss of bone mineral density and increased fracture risk. Reduction of hip fracture incidence is of major clinical importance. Hip protectors aim to attenuate the impact force transmitted to the femur upon falling, however different conclusions on their efficacy have been reported; some authors suggest this may be due to differences in compliance. The aim of this study was to apply an <em>In Silico</em> trial methodology to predict the effectiveness of hip protectors and its dependence on compliance.</p><p>A cohort of 1044 virtual patients (Finite Element models of proximal femur) were generated. A Markov chain process was implemented to predict fracture incidence with and without hip protectors, by simulating different levels of compliance. At each simulated follow-up year, a Poisson distribution was randomly sampled to determine the number of falls sustained by each patient. Impact direction and force were stochastically sampled from a range of possible scenarios. The effect of wearing a hip protector was simulated by applying attenuation coefficients to the impact force (12.9 %, 19 % and 33.8 %, as reported for available devices). A patient was considered fractured when impact force exceeded the femur strength.</p><p>Without hip protector, virtual patients experienced 66 ± 5 fractures in 10 years. Wearing the three devices, fracture incidence was reduced to 43 ± 4, 35 ± 4 and 17 ± 2 respectively, at full compliance. As expected, effectiveness was dependent on compliance.</p><p>This <em>In Silico</em> trial technology can be applied in the future to test multiple interventions, optimise intervention strategies, improve clinical trial design and drug development.</p></div>\",\"PeriodicalId\":15168,\"journal\":{\"name\":\"Journal of biomechanics\",\"volume\":\"176 \",\"pages\":\"Article 112335\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0021929024004135/pdfft?md5=3a4fe634f56146bf7ef130db83fd5829&pid=1-s2.0-S0021929024004135-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021929024004135\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929024004135","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
In Silico clinical trial to predict the efficacy of hip protectors for preventing hip fractures
Osteoporosis is characterized by loss of bone mineral density and increased fracture risk. Reduction of hip fracture incidence is of major clinical importance. Hip protectors aim to attenuate the impact force transmitted to the femur upon falling, however different conclusions on their efficacy have been reported; some authors suggest this may be due to differences in compliance. The aim of this study was to apply an In Silico trial methodology to predict the effectiveness of hip protectors and its dependence on compliance.
A cohort of 1044 virtual patients (Finite Element models of proximal femur) were generated. A Markov chain process was implemented to predict fracture incidence with and without hip protectors, by simulating different levels of compliance. At each simulated follow-up year, a Poisson distribution was randomly sampled to determine the number of falls sustained by each patient. Impact direction and force were stochastically sampled from a range of possible scenarios. The effect of wearing a hip protector was simulated by applying attenuation coefficients to the impact force (12.9 %, 19 % and 33.8 %, as reported for available devices). A patient was considered fractured when impact force exceeded the femur strength.
Without hip protector, virtual patients experienced 66 ± 5 fractures in 10 years. Wearing the three devices, fracture incidence was reduced to 43 ± 4, 35 ± 4 and 17 ± 2 respectively, at full compliance. As expected, effectiveness was dependent on compliance.
This In Silico trial technology can be applied in the future to test multiple interventions, optimise intervention strategies, improve clinical trial design and drug development.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.