Xinlei Yu , Zhipeng Gao , Chen Zhao , Yan Qiao , Ze Chai , Zijia Mo , Yang Yang
{"title":"DUDS:在非 IID 和不平衡数据上进行联合学习的多样性感知无偏设备选择","authors":"Xinlei Yu , Zhipeng Gao , Chen Zhao , Yan Qiao , Ze Chai , Zijia Mo , Yang Yang","doi":"10.1016/j.sysarc.2024.103280","DOIUrl":null,"url":null,"abstract":"<div><p>Federated Learning (FL) is a distributed machine learning approach that preserves privacy by allowing numerous devices to collaboratively train a global model without sharing raw data. However, the frequent exchange of model updates between numerous devices and the central server, and some model updates are similar and redundant, resulting in a waste of communication and computation. Selecting a subset of all devices for FL training can mitigate this issue. Nevertheless, most existing device selection methods are biased, while unbiased methods often perform unstable on Non-Independent Identically Distributed (Non-IID) and unbalanced data. To address this, we propose a stable Diversity-aware Unbiased Device Selection (DUDS) method for FL on Non-IID and unbalanced data. DUDS diversifies the participation probabilities for device sampling in each FL training round, mitigating the randomness of the individual device selection process. By using a leader-based cluster adjustment mechanism to meet unbiased selection constraints, DUDS achieves stable convergence and results close to the optimal, as if all devices participated. Extensive experiments demonstrate the effectiveness of DUDS on Non-IID and unbalanced data scenarios in FL.</p></div>","PeriodicalId":50027,"journal":{"name":"Journal of Systems Architecture","volume":"156 ","pages":"Article 103280"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DUDS: Diversity-aware unbiased device selection for federated learning on Non-IID and unbalanced data\",\"authors\":\"Xinlei Yu , Zhipeng Gao , Chen Zhao , Yan Qiao , Ze Chai , Zijia Mo , Yang Yang\",\"doi\":\"10.1016/j.sysarc.2024.103280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Federated Learning (FL) is a distributed machine learning approach that preserves privacy by allowing numerous devices to collaboratively train a global model without sharing raw data. However, the frequent exchange of model updates between numerous devices and the central server, and some model updates are similar and redundant, resulting in a waste of communication and computation. Selecting a subset of all devices for FL training can mitigate this issue. Nevertheless, most existing device selection methods are biased, while unbiased methods often perform unstable on Non-Independent Identically Distributed (Non-IID) and unbalanced data. To address this, we propose a stable Diversity-aware Unbiased Device Selection (DUDS) method for FL on Non-IID and unbalanced data. DUDS diversifies the participation probabilities for device sampling in each FL training round, mitigating the randomness of the individual device selection process. By using a leader-based cluster adjustment mechanism to meet unbiased selection constraints, DUDS achieves stable convergence and results close to the optimal, as if all devices participated. Extensive experiments demonstrate the effectiveness of DUDS on Non-IID and unbalanced data scenarios in FL.</p></div>\",\"PeriodicalId\":50027,\"journal\":{\"name\":\"Journal of Systems Architecture\",\"volume\":\"156 \",\"pages\":\"Article 103280\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Architecture\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383762124002170\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Architecture","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383762124002170","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
DUDS: Diversity-aware unbiased device selection for federated learning on Non-IID and unbalanced data
Federated Learning (FL) is a distributed machine learning approach that preserves privacy by allowing numerous devices to collaboratively train a global model without sharing raw data. However, the frequent exchange of model updates between numerous devices and the central server, and some model updates are similar and redundant, resulting in a waste of communication and computation. Selecting a subset of all devices for FL training can mitigate this issue. Nevertheless, most existing device selection methods are biased, while unbiased methods often perform unstable on Non-Independent Identically Distributed (Non-IID) and unbalanced data. To address this, we propose a stable Diversity-aware Unbiased Device Selection (DUDS) method for FL on Non-IID and unbalanced data. DUDS diversifies the participation probabilities for device sampling in each FL training round, mitigating the randomness of the individual device selection process. By using a leader-based cluster adjustment mechanism to meet unbiased selection constraints, DUDS achieves stable convergence and results close to the optimal, as if all devices participated. Extensive experiments demonstrate the effectiveness of DUDS on Non-IID and unbalanced data scenarios in FL.
期刊介绍:
The Journal of Systems Architecture: Embedded Software Design (JSA) is a journal covering all design and architectural aspects related to embedded systems and software. It ranges from the microarchitecture level via the system software level up to the application-specific architecture level. Aspects such as real-time systems, operating systems, FPGA programming, programming languages, communications (limited to analysis and the software stack), mobile systems, parallel and distributed architectures as well as additional subjects in the computer and system architecture area will fall within the scope of this journal. Technology will not be a main focus, but its use and relevance to particular designs will be. Case studies are welcome but must contribute more than just a design for a particular piece of software.
Design automation of such systems including methodologies, techniques and tools for their design as well as novel designs of software components fall within the scope of this journal. Novel applications that use embedded systems are also central in this journal. While hardware is not a part of this journal hardware/software co-design methods that consider interplay between software and hardware components with and emphasis on software are also relevant here.