{"title":"倾斜晶界的内在拉伸脆性及其剪切增韧作用","authors":"Jia Meng , Shenyou Peng , Qihong Fang , Jia Li , Yujie Wei","doi":"10.1016/j.jmps.2024.105869","DOIUrl":null,"url":null,"abstract":"<div><p>In the endeavors of working with microstructures in polycrystalline metals for better strength and ductility, grain boundaries (GBs) are placed at the front burner for their pivotal roles in plastic deformation. Often the mechanical properties of polycrystalline metals are governed by mutual interactions among GBs and dislocations. A thorough comprehension of GB deformation is therefore critical for the design of metals of superb performance. In this research, we investigated the mechanical behavior of symmetric tilt grain boundaries in face-centered cubic (F.C.C.) nickel, which may be subject to tension, shearing, and mixing-mode load using molecular dynamics simulations. We observed that (1) there exist four types of micro deformation mechanisms in GBs, and illustrate at the atomistic scale their distinctions and their dependence on the activation of lattice slip in the crystal; (2) GBs are intrinsically brittle under tension but exhibit ductile behavior during shearing. Shifting from pure tension with increasing shear component during mixing-mode load leads to GB toughening; and (3) there lacks conceivable dependence of GB tensile strength on tilted GBs, in contrast to a relatively rough trend of greater shear strength in GBs of large misorientation. GB energy shows no direct connection with GB strength, as broadly reported in existing literature. This research enhances our mechanistic understanding of GB plasticity in crystalline metals, and points to a potential way of making strong-yet-tough polycrystalline metals through GB engineering: in addition to GB structure manipulation, tuning the loading mode of GBs may open another avenue for their better performance.</p></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"193 ","pages":"Article 105869"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intrinsic tensile brittleness of tilted grain boundaries and its shear toughening\",\"authors\":\"Jia Meng , Shenyou Peng , Qihong Fang , Jia Li , Yujie Wei\",\"doi\":\"10.1016/j.jmps.2024.105869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the endeavors of working with microstructures in polycrystalline metals for better strength and ductility, grain boundaries (GBs) are placed at the front burner for their pivotal roles in plastic deformation. Often the mechanical properties of polycrystalline metals are governed by mutual interactions among GBs and dislocations. A thorough comprehension of GB deformation is therefore critical for the design of metals of superb performance. In this research, we investigated the mechanical behavior of symmetric tilt grain boundaries in face-centered cubic (F.C.C.) nickel, which may be subject to tension, shearing, and mixing-mode load using molecular dynamics simulations. We observed that (1) there exist four types of micro deformation mechanisms in GBs, and illustrate at the atomistic scale their distinctions and their dependence on the activation of lattice slip in the crystal; (2) GBs are intrinsically brittle under tension but exhibit ductile behavior during shearing. Shifting from pure tension with increasing shear component during mixing-mode load leads to GB toughening; and (3) there lacks conceivable dependence of GB tensile strength on tilted GBs, in contrast to a relatively rough trend of greater shear strength in GBs of large misorientation. GB energy shows no direct connection with GB strength, as broadly reported in existing literature. This research enhances our mechanistic understanding of GB plasticity in crystalline metals, and points to a potential way of making strong-yet-tough polycrystalline metals through GB engineering: in addition to GB structure manipulation, tuning the loading mode of GBs may open another avenue for their better performance.</p></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"193 \",\"pages\":\"Article 105869\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509624003351\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624003351","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Intrinsic tensile brittleness of tilted grain boundaries and its shear toughening
In the endeavors of working with microstructures in polycrystalline metals for better strength and ductility, grain boundaries (GBs) are placed at the front burner for their pivotal roles in plastic deformation. Often the mechanical properties of polycrystalline metals are governed by mutual interactions among GBs and dislocations. A thorough comprehension of GB deformation is therefore critical for the design of metals of superb performance. In this research, we investigated the mechanical behavior of symmetric tilt grain boundaries in face-centered cubic (F.C.C.) nickel, which may be subject to tension, shearing, and mixing-mode load using molecular dynamics simulations. We observed that (1) there exist four types of micro deformation mechanisms in GBs, and illustrate at the atomistic scale their distinctions and their dependence on the activation of lattice slip in the crystal; (2) GBs are intrinsically brittle under tension but exhibit ductile behavior during shearing. Shifting from pure tension with increasing shear component during mixing-mode load leads to GB toughening; and (3) there lacks conceivable dependence of GB tensile strength on tilted GBs, in contrast to a relatively rough trend of greater shear strength in GBs of large misorientation. GB energy shows no direct connection with GB strength, as broadly reported in existing literature. This research enhances our mechanistic understanding of GB plasticity in crystalline metals, and points to a potential way of making strong-yet-tough polycrystalline metals through GB engineering: in addition to GB structure manipulation, tuning the loading mode of GBs may open another avenue for their better performance.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.