Einar Eg Nielsen, Kim Birnie-Gauvin, Henrik Baktoft, Haritz Arrizabalaga, Tomas Brodin, Massimiliano Cardinale, Michele Casini, Gustav Helström, Teunis Jansen, Anders Koed, Petter Lundberg, Brian R. MacKenzie, Antonio Medina, Søren Post, Naiara Rodriguez-Ezpeleta, Andreas Sundelöf, José Luis Varela, Kim Aarestrup
{"title":"基因性别和产地鉴定表明东北大西洋雌雄大西洋蓝鳍金枪鱼(Thunnus thynnus)的迁移存在差异","authors":"Einar Eg Nielsen, Kim Birnie-Gauvin, Henrik Baktoft, Haritz Arrizabalaga, Tomas Brodin, Massimiliano Cardinale, Michele Casini, Gustav Helström, Teunis Jansen, Anders Koed, Petter Lundberg, Brian R. MacKenzie, Antonio Medina, Søren Post, Naiara Rodriguez-Ezpeleta, Andreas Sundelöf, José Luis Varela, Kim Aarestrup","doi":"10.1111/eva.70009","DOIUrl":null,"url":null,"abstract":"<p>Knowledge about sex-specific difference in life-history traits—like growth, mortality, or behavior—is of key importance for management and conservation as these parameters are essential for predictive modeling of population sustainability. We applied a newly developed molecular sex identification method, in combination with a SNP (single nucleotide polymorphism) panel for inferring the population of origin, for more than 300 large Atlantic bluefin tuna (ABFT) collected over several years from newly reclaimed feeding grounds in the Northeast Atlantic. The vast majority (95%) of individuals were genetically assigned to the eastern Atlantic population, which migrates between spawning grounds in the Mediterranean and feeding grounds in the Northeast Atlantic. We found a consistent pattern of a male bias among the eastern Atlantic individuals, with a 4-year mean of 63% males (59%–65%). Males were most prominent within the smallest (< 230 cm) and largest (> 250 cm) length classes, while the sex ratio was close to 1:1 for intermediate sizes (230–250 cm). The results from this new, widely applicable, and noninvasive approach suggests differential occupancy or migration timing of ABFT males and females, which cannot be explained alone by sex-specific differences in growth. Our findings are corroborated by previous traditional studies of sex ratios in dead ABFT from the Atlantic, the Mediterranean, and the Gulf of Mexico. In concert with observed differences in growth and mortality rates between the sexes, these findings should be recognized in order to sustainably manage the resource, maintain productivity, and conserve diversity within the species.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70009","citationCount":"0","resultStr":"{\"title\":\"Genetic Sex and Origin Identification Suggests Differential Migration of Male and Female Atlantic Bluefin Tuna (Thunnus thynnus) in the Northeast Atlantic\",\"authors\":\"Einar Eg Nielsen, Kim Birnie-Gauvin, Henrik Baktoft, Haritz Arrizabalaga, Tomas Brodin, Massimiliano Cardinale, Michele Casini, Gustav Helström, Teunis Jansen, Anders Koed, Petter Lundberg, Brian R. MacKenzie, Antonio Medina, Søren Post, Naiara Rodriguez-Ezpeleta, Andreas Sundelöf, José Luis Varela, Kim Aarestrup\",\"doi\":\"10.1111/eva.70009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Knowledge about sex-specific difference in life-history traits—like growth, mortality, or behavior—is of key importance for management and conservation as these parameters are essential for predictive modeling of population sustainability. We applied a newly developed molecular sex identification method, in combination with a SNP (single nucleotide polymorphism) panel for inferring the population of origin, for more than 300 large Atlantic bluefin tuna (ABFT) collected over several years from newly reclaimed feeding grounds in the Northeast Atlantic. The vast majority (95%) of individuals were genetically assigned to the eastern Atlantic population, which migrates between spawning grounds in the Mediterranean and feeding grounds in the Northeast Atlantic. We found a consistent pattern of a male bias among the eastern Atlantic individuals, with a 4-year mean of 63% males (59%–65%). Males were most prominent within the smallest (< 230 cm) and largest (> 250 cm) length classes, while the sex ratio was close to 1:1 for intermediate sizes (230–250 cm). The results from this new, widely applicable, and noninvasive approach suggests differential occupancy or migration timing of ABFT males and females, which cannot be explained alone by sex-specific differences in growth. Our findings are corroborated by previous traditional studies of sex ratios in dead ABFT from the Atlantic, the Mediterranean, and the Gulf of Mexico. In concert with observed differences in growth and mortality rates between the sexes, these findings should be recognized in order to sustainably manage the resource, maintain productivity, and conserve diversity within the species.</p>\",\"PeriodicalId\":168,\"journal\":{\"name\":\"Evolutionary Applications\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eva.70009\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.70009","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Genetic Sex and Origin Identification Suggests Differential Migration of Male and Female Atlantic Bluefin Tuna (Thunnus thynnus) in the Northeast Atlantic
Knowledge about sex-specific difference in life-history traits—like growth, mortality, or behavior—is of key importance for management and conservation as these parameters are essential for predictive modeling of population sustainability. We applied a newly developed molecular sex identification method, in combination with a SNP (single nucleotide polymorphism) panel for inferring the population of origin, for more than 300 large Atlantic bluefin tuna (ABFT) collected over several years from newly reclaimed feeding grounds in the Northeast Atlantic. The vast majority (95%) of individuals were genetically assigned to the eastern Atlantic population, which migrates between spawning grounds in the Mediterranean and feeding grounds in the Northeast Atlantic. We found a consistent pattern of a male bias among the eastern Atlantic individuals, with a 4-year mean of 63% males (59%–65%). Males were most prominent within the smallest (< 230 cm) and largest (> 250 cm) length classes, while the sex ratio was close to 1:1 for intermediate sizes (230–250 cm). The results from this new, widely applicable, and noninvasive approach suggests differential occupancy or migration timing of ABFT males and females, which cannot be explained alone by sex-specific differences in growth. Our findings are corroborated by previous traditional studies of sex ratios in dead ABFT from the Atlantic, the Mediterranean, and the Gulf of Mexico. In concert with observed differences in growth and mortality rates between the sexes, these findings should be recognized in order to sustainably manage the resource, maintain productivity, and conserve diversity within the species.
期刊介绍:
Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.