无 "死锰 "和腐蚀的 MnO2/Mn2+ 化学离子锚定策略

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-09-21 DOI:10.1021/acsnano.4c09761
Xilong Li, Kaiwen Qi, Zili Qin, Xuan Ding, Yongchun Zhu, Zhiguo Hou, Yitai Qian
{"title":"无 \"死锰 \"和腐蚀的 MnO2/Mn2+ 化学离子锚定策略","authors":"Xilong Li, Kaiwen Qi, Zili Qin, Xuan Ding, Yongchun Zhu, Zhiguo Hou, Yitai Qian","doi":"10.1021/acsnano.4c09761","DOIUrl":null,"url":null,"abstract":"The utilization of MnO<sub>2</sub>/Mn<sup>2+</sup> chemistry in near-neutral pH acetate aqueous electrolytes provides an opportunity to achieve a higher energy density (theoretical capacity 616 mA h/g, discharge platform &gt;1.5 V). However, this Zn-MnO<sub>2</sub> aqueous battery suffers from inevitable “dead Mn” and proton corrosion. In this study, we discover that the diffusion of the cathode reaction intermediate Mn<sup>3+</sup> is intrinsic for the generation of “dead Mn”, and the accumulation of “dead Mn” increases the H<sup>+</sup> which shuttles to the anode, inducing serious corrosion. A pH-neutral hydrogel ion-anchored strategy is proposed here not only to restrict the diffusion of Mn<sup>3+</sup> but also to suppress the proton transference. This hydrogel ion anchor is designed by deprotonating a series of monomers undergoing in situ free radical polymerization at the cathode interface. The anionic monomer with a moderate binding energy to manganese ions is screened to anchor Mn<sup>3+</sup>, which enhances the reversibility of the MnO<sub>2</sub>/Mn<sup>2+</sup> reaction. Simultaneously, a substantial amount of anionic groups and hydrophilic functional groups in the hydrogel effectively constrains the proton shuttle to corrode the anode. Consequently, the Zn/MnO<sub>2</sub> battery achieves exceptional cyclic stability of the MnO<sub>2</sub>/Mn<sup>2+</sup> reaction, sustaining 8500 cycles even at a relatively low current density and discharge current density of 1 mA/cm<sup>2</sup>. Our findings highlight the importance of anchoring Mn<sup>3+</sup> at the cathode interface and offer valuable insights for advancing practical applications of MnO<sub>2</sub>/Mn<sup>2+</sup> reactions.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ion-Anchored Strategy for MnO2/Mn2+ Chemistry without “Dead Mn” and Corrosion\",\"authors\":\"Xilong Li, Kaiwen Qi, Zili Qin, Xuan Ding, Yongchun Zhu, Zhiguo Hou, Yitai Qian\",\"doi\":\"10.1021/acsnano.4c09761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The utilization of MnO<sub>2</sub>/Mn<sup>2+</sup> chemistry in near-neutral pH acetate aqueous electrolytes provides an opportunity to achieve a higher energy density (theoretical capacity 616 mA h/g, discharge platform &gt;1.5 V). However, this Zn-MnO<sub>2</sub> aqueous battery suffers from inevitable “dead Mn” and proton corrosion. In this study, we discover that the diffusion of the cathode reaction intermediate Mn<sup>3+</sup> is intrinsic for the generation of “dead Mn”, and the accumulation of “dead Mn” increases the H<sup>+</sup> which shuttles to the anode, inducing serious corrosion. A pH-neutral hydrogel ion-anchored strategy is proposed here not only to restrict the diffusion of Mn<sup>3+</sup> but also to suppress the proton transference. This hydrogel ion anchor is designed by deprotonating a series of monomers undergoing in situ free radical polymerization at the cathode interface. The anionic monomer with a moderate binding energy to manganese ions is screened to anchor Mn<sup>3+</sup>, which enhances the reversibility of the MnO<sub>2</sub>/Mn<sup>2+</sup> reaction. Simultaneously, a substantial amount of anionic groups and hydrophilic functional groups in the hydrogel effectively constrains the proton shuttle to corrode the anode. Consequently, the Zn/MnO<sub>2</sub> battery achieves exceptional cyclic stability of the MnO<sub>2</sub>/Mn<sup>2+</sup> reaction, sustaining 8500 cycles even at a relatively low current density and discharge current density of 1 mA/cm<sup>2</sup>. Our findings highlight the importance of anchoring Mn<sup>3+</sup> at the cathode interface and offer valuable insights for advancing practical applications of MnO<sub>2</sub>/Mn<sup>2+</sup> reactions.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c09761\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c09761","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在接近中性 pH 值的醋酸盐水溶液电解质中利用 MnO2/Mn2+ 化学性质,为实现更高的能量密度(理论容量为 616 mA h/g,放电平台为 1.5 V)提供了机会。然而,这种 Zn-MnO2 水电池存在不可避免的 "死锰 "和质子腐蚀问题。在这项研究中,我们发现阴极反应中间体 Mn3+ 的扩散是产生 "死 Mn "的内在原因,而 "死 Mn "的积累会增加穿梭到阳极的 H+,从而诱发严重的腐蚀。本文提出了一种 pH 值中性的水凝胶离子锚定策略,不仅能限制 Mn3+ 的扩散,还能抑制质子转移。这种水凝胶离子锚是通过在阴极界面上对一系列进行原位自由基聚合的单体进行去质子化而设计的。筛选出与锰离子结合能适中的阴离子单体来锚定 Mn3+,从而增强了 MnO2/Mn2+ 反应的可逆性。同时,水凝胶中大量的阴离子基团和亲水官能团有效地限制了质子穿梭腐蚀阳极。因此,Zn/MnO2 电池实现了 MnO2/Mn2+ 反应的卓越循环稳定性,即使在相对较低的电流密度和 1 mA/cm2 的放电电流密度下,也能维持 8500 次循环。我们的研究结果突显了在阴极界面锚定 Mn3+ 的重要性,并为推动 MnO2/Mn2+ 反应的实际应用提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ion-Anchored Strategy for MnO2/Mn2+ Chemistry without “Dead Mn” and Corrosion
The utilization of MnO2/Mn2+ chemistry in near-neutral pH acetate aqueous electrolytes provides an opportunity to achieve a higher energy density (theoretical capacity 616 mA h/g, discharge platform >1.5 V). However, this Zn-MnO2 aqueous battery suffers from inevitable “dead Mn” and proton corrosion. In this study, we discover that the diffusion of the cathode reaction intermediate Mn3+ is intrinsic for the generation of “dead Mn”, and the accumulation of “dead Mn” increases the H+ which shuttles to the anode, inducing serious corrosion. A pH-neutral hydrogel ion-anchored strategy is proposed here not only to restrict the diffusion of Mn3+ but also to suppress the proton transference. This hydrogel ion anchor is designed by deprotonating a series of monomers undergoing in situ free radical polymerization at the cathode interface. The anionic monomer with a moderate binding energy to manganese ions is screened to anchor Mn3+, which enhances the reversibility of the MnO2/Mn2+ reaction. Simultaneously, a substantial amount of anionic groups and hydrophilic functional groups in the hydrogel effectively constrains the proton shuttle to corrode the anode. Consequently, the Zn/MnO2 battery achieves exceptional cyclic stability of the MnO2/Mn2+ reaction, sustaining 8500 cycles even at a relatively low current density and discharge current density of 1 mA/cm2. Our findings highlight the importance of anchoring Mn3+ at the cathode interface and offer valuable insights for advancing practical applications of MnO2/Mn2+ reactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Simultaneous Protein and RNA Analysis in Single Extracellular Vesicles, Including Viruses Engineering Injectable Coassembled Hydrogel by Photothermal Driven Chitosan-Stabilized MoS2 Nanosheets for Infected Wound Healing Atomic Structure and 3D Shape of a Multibranched Plasmonic Nanostar from a Single Spatially Resolved Electron Diffraction Map Ion-Anchored Strategy for MnO2/Mn2+ Chemistry without “Dead Mn” and Corrosion Engineering AIEgens-Tethered Gold Nanoparticles with Enzymatic Dual Self-Assembly for Amplified Cancer-Specific Phototheranostics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1