{"title":"动态扰动下多模光纤的实时波前控制","authors":"Zhengyang Wang, Jiawei Luo, Yuecheng Shen, Daixuan Wu, Jiajun Liang, Jiaming Liang, Yujie Chen, Zhiling Zhang, Dalong Qi, Yunhua Yao, Lianzhong Deng, Zhenrong Sun, Shian Zhang","doi":"10.1002/lpor.202400947","DOIUrl":null,"url":null,"abstract":"Multimode fibers (MMFs), which transmit multiple spatial modes simultaneously, are essential in imaging, communication, and sensing. However, mode crosstalk significantly impairs the clarity of transmitted signals. Wavefront shaping has emerged as an effective strategy to minimize these distortions. Given the dynamic environmental conditions under which MMFs operate, rapid technological adaptation is crucial. A high-speed full-field wavefront shaping system designed for real-time MMF control is developed. This system leverages probabilistic phase shaping, superpixel modulation, and a digital micromirror device (DMD) to achieve operational speeds of 38 ms per cycle for 400 spatial modes, translating to an average mode time of 95 µs. This rate sets a new record for DMD-based systems, pushing hardware limits. The system supports continuous operation at 11 Hz and maintains high-quality optical focus through MMFs under varying environmental conditions, with a focusing efficiency exceeding 50% of the theoretical maximum. Its compatibility with fluorescent guide stars enables transmission matrix characterization when direct access is unfeasible, broadening its applications. This high-speed full-field wavefront shaping system represents a significant breakthrough, enhancing the functionality and versatility of MMF-based applications.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Wavefront Control of Multimode Fibers under Dynamic Perturbation\",\"authors\":\"Zhengyang Wang, Jiawei Luo, Yuecheng Shen, Daixuan Wu, Jiajun Liang, Jiaming Liang, Yujie Chen, Zhiling Zhang, Dalong Qi, Yunhua Yao, Lianzhong Deng, Zhenrong Sun, Shian Zhang\",\"doi\":\"10.1002/lpor.202400947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimode fibers (MMFs), which transmit multiple spatial modes simultaneously, are essential in imaging, communication, and sensing. However, mode crosstalk significantly impairs the clarity of transmitted signals. Wavefront shaping has emerged as an effective strategy to minimize these distortions. Given the dynamic environmental conditions under which MMFs operate, rapid technological adaptation is crucial. A high-speed full-field wavefront shaping system designed for real-time MMF control is developed. This system leverages probabilistic phase shaping, superpixel modulation, and a digital micromirror device (DMD) to achieve operational speeds of 38 ms per cycle for 400 spatial modes, translating to an average mode time of 95 µs. This rate sets a new record for DMD-based systems, pushing hardware limits. The system supports continuous operation at 11 Hz and maintains high-quality optical focus through MMFs under varying environmental conditions, with a focusing efficiency exceeding 50% of the theoretical maximum. Its compatibility with fluorescent guide stars enables transmission matrix characterization when direct access is unfeasible, broadening its applications. This high-speed full-field wavefront shaping system represents a significant breakthrough, enhancing the functionality and versatility of MMF-based applications.\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/lpor.202400947\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202400947","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Real-Time Wavefront Control of Multimode Fibers under Dynamic Perturbation
Multimode fibers (MMFs), which transmit multiple spatial modes simultaneously, are essential in imaging, communication, and sensing. However, mode crosstalk significantly impairs the clarity of transmitted signals. Wavefront shaping has emerged as an effective strategy to minimize these distortions. Given the dynamic environmental conditions under which MMFs operate, rapid technological adaptation is crucial. A high-speed full-field wavefront shaping system designed for real-time MMF control is developed. This system leverages probabilistic phase shaping, superpixel modulation, and a digital micromirror device (DMD) to achieve operational speeds of 38 ms per cycle for 400 spatial modes, translating to an average mode time of 95 µs. This rate sets a new record for DMD-based systems, pushing hardware limits. The system supports continuous operation at 11 Hz and maintains high-quality optical focus through MMFs under varying environmental conditions, with a focusing efficiency exceeding 50% of the theoretical maximum. Its compatibility with fluorescent guide stars enables transmission matrix characterization when direct access is unfeasible, broadening its applications. This high-speed full-field wavefront shaping system represents a significant breakthrough, enhancing the functionality and versatility of MMF-based applications.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.