Tomás Vergara*, Daviel Gómez, Lucas Warmuth, Annika E. Enss, Martin Peterlechner, Rodrigo Pallacán, Vlad Martin Diaconescu, Laura Simonelli, Felix Studt, Patricia Concepción, Romel Jiménez and Alejandro Karelovic*,
{"title":"关于 Cu/ZrO2 上 CO2 加氢反应的结构敏感性:透视支撑和活性位点的作用","authors":"Tomás Vergara*, Daviel Gómez, Lucas Warmuth, Annika E. Enss, Martin Peterlechner, Rodrigo Pallacán, Vlad Martin Diaconescu, Laura Simonelli, Felix Studt, Patricia Concepción, Romel Jiménez and Alejandro Karelovic*, ","doi":"10.1021/acscatal.4c0380310.1021/acscatal.4c03803","DOIUrl":null,"url":null,"abstract":"<p >The well-known structure sensitivity of CO<sub>2</sub> hydrogenation to methanol has shown to be an impactful topic for the performance of the catalyst and yet remains unaddressed for Cu nanoparticles supported on ZrO<sub>2</sub>, a material that has shown to be involved in the active site and the reaction mechanism of methanol formation. Herein, Cu/ZrO<sub>2</sub> catalysts were studied to unravel the underlying structure–activity relationships by combining surface and bulk characterization techniques, kinetic measurements, operando<i>-</i>DRIFTS and DFT calculations. Contrary to Cu over inert supports, the results showed different trends and two distinct kinetic regimes. For Cu nanoparticles larger than 2 nm, they are in accordance with previously reported results, this is, a change in the number of active sites, without affecting the nature of them. Conversely, it is demonstrated that the active sites are markedly different over the regime of nanoparticles smaller than 2 nm, accessed for ultralow Cu contents of 0.1 wt %, as evidenced from the systematic change of kinetic parameters and from operando<i>-</i>DRIFTS. The distinct active sites were identified as isolated Cu species (i.e., single atoms and Cu incorporated into the lattice of ZrO<sub>2</sub>) and highly stable Cu clusters, both of which would allocate the formation of products for low metal contents. The results are certainly related to the interaction between Cu and ZrO<sub>2</sub> and unequivocally disclose the relationship between activity regimes and the nature of active sites as a function of the Cu particle size. Furthermore, they demonstrate that distinct active sites can be accessed just by varying the metal content on active reducible supports. As such, the findings are of particular relevance for the fundamental understanding of the interaction between Cu and ZrO<sub>2</sub> and its interdependence with the size of the Cu nanoparticles, as well as for the rational design of catalysts for CO<sub>2</sub> hydrogenation to methanol.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Structure Sensitivity of CO2 Hydrogenation over Cu/ZrO2: Insights into the Role of the Support and the Active Sites\",\"authors\":\"Tomás Vergara*, Daviel Gómez, Lucas Warmuth, Annika E. Enss, Martin Peterlechner, Rodrigo Pallacán, Vlad Martin Diaconescu, Laura Simonelli, Felix Studt, Patricia Concepción, Romel Jiménez and Alejandro Karelovic*, \",\"doi\":\"10.1021/acscatal.4c0380310.1021/acscatal.4c03803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The well-known structure sensitivity of CO<sub>2</sub> hydrogenation to methanol has shown to be an impactful topic for the performance of the catalyst and yet remains unaddressed for Cu nanoparticles supported on ZrO<sub>2</sub>, a material that has shown to be involved in the active site and the reaction mechanism of methanol formation. Herein, Cu/ZrO<sub>2</sub> catalysts were studied to unravel the underlying structure–activity relationships by combining surface and bulk characterization techniques, kinetic measurements, operando<i>-</i>DRIFTS and DFT calculations. Contrary to Cu over inert supports, the results showed different trends and two distinct kinetic regimes. For Cu nanoparticles larger than 2 nm, they are in accordance with previously reported results, this is, a change in the number of active sites, without affecting the nature of them. Conversely, it is demonstrated that the active sites are markedly different over the regime of nanoparticles smaller than 2 nm, accessed for ultralow Cu contents of 0.1 wt %, as evidenced from the systematic change of kinetic parameters and from operando<i>-</i>DRIFTS. The distinct active sites were identified as isolated Cu species (i.e., single atoms and Cu incorporated into the lattice of ZrO<sub>2</sub>) and highly stable Cu clusters, both of which would allocate the formation of products for low metal contents. The results are certainly related to the interaction between Cu and ZrO<sub>2</sub> and unequivocally disclose the relationship between activity regimes and the nature of active sites as a function of the Cu particle size. Furthermore, they demonstrate that distinct active sites can be accessed just by varying the metal content on active reducible supports. As such, the findings are of particular relevance for the fundamental understanding of the interaction between Cu and ZrO<sub>2</sub> and its interdependence with the size of the Cu nanoparticles, as well as for the rational design of catalysts for CO<sub>2</sub> hydrogenation to methanol.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscatal.4c03803\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c03803","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
On the Structure Sensitivity of CO2 Hydrogenation over Cu/ZrO2: Insights into the Role of the Support and the Active Sites
The well-known structure sensitivity of CO2 hydrogenation to methanol has shown to be an impactful topic for the performance of the catalyst and yet remains unaddressed for Cu nanoparticles supported on ZrO2, a material that has shown to be involved in the active site and the reaction mechanism of methanol formation. Herein, Cu/ZrO2 catalysts were studied to unravel the underlying structure–activity relationships by combining surface and bulk characterization techniques, kinetic measurements, operando-DRIFTS and DFT calculations. Contrary to Cu over inert supports, the results showed different trends and two distinct kinetic regimes. For Cu nanoparticles larger than 2 nm, they are in accordance with previously reported results, this is, a change in the number of active sites, without affecting the nature of them. Conversely, it is demonstrated that the active sites are markedly different over the regime of nanoparticles smaller than 2 nm, accessed for ultralow Cu contents of 0.1 wt %, as evidenced from the systematic change of kinetic parameters and from operando-DRIFTS. The distinct active sites were identified as isolated Cu species (i.e., single atoms and Cu incorporated into the lattice of ZrO2) and highly stable Cu clusters, both of which would allocate the formation of products for low metal contents. The results are certainly related to the interaction between Cu and ZrO2 and unequivocally disclose the relationship between activity regimes and the nature of active sites as a function of the Cu particle size. Furthermore, they demonstrate that distinct active sites can be accessed just by varying the metal content on active reducible supports. As such, the findings are of particular relevance for the fundamental understanding of the interaction between Cu and ZrO2 and its interdependence with the size of the Cu nanoparticles, as well as for the rational design of catalysts for CO2 hydrogenation to methanol.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.