通过相位肖像研究 (3+1) 维方程的多孑子模式和动力学特征

Muhammad Bilal Riaz , Adil Jhangeer , Tomas Kozubek , Syeda Sarwat Kazmi
{"title":"通过相位肖像研究 (3+1) 维方程的多孑子模式和动力学特征","authors":"Muhammad Bilal Riaz ,&nbsp;Adil Jhangeer ,&nbsp;Tomas Kozubek ,&nbsp;Syeda Sarwat Kazmi","doi":"10.1016/j.padiff.2024.100926","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigate the deeper characteristics of the modified Ito equation, which can be applied across various scientific domains to represent systems influenced by noise and randomness. Multi-solitons, including 1-wave, 2-wave, and 3-wave solitons, have been successfully generated using a multiple exponential-function approach. For visual representation, the outcomes are displayed through 3D, 2D, density, and contour plots. The wave transformation is then applied to convert the studied model into an ordinary differential equation. Following this, the dynamic nature of the model is examined from various viewpoints, including bifurcation, chaotic phenomena, multistability, and sensitivity analysis. Bifurcation shows how the solution of a planar system depends on equilibrium points, and when an outward periodic force is implemented to the unperturbed planar system, it reveals chaotic characteristics. These are analyzed using tools such as 3-dimensional and 2-dimensional plots, time scale plots, and Poincaré maps. Additionally, the model’s sensitivity is assessed with varying initial values. The results underscore the effectiveness and relevance of the proposed approaches for examining solitons within a broad spectrum of nonlinear systems.</p></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100926"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666818124003127/pdfft?md5=ebe498884be147f2fba753ac825fcfac&pid=1-s2.0-S2666818124003127-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigating multi-soliton patterns and dynamical characteristics of the (3+1)-dimensional equation via phase portraits\",\"authors\":\"Muhammad Bilal Riaz ,&nbsp;Adil Jhangeer ,&nbsp;Tomas Kozubek ,&nbsp;Syeda Sarwat Kazmi\",\"doi\":\"10.1016/j.padiff.2024.100926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we investigate the deeper characteristics of the modified Ito equation, which can be applied across various scientific domains to represent systems influenced by noise and randomness. Multi-solitons, including 1-wave, 2-wave, and 3-wave solitons, have been successfully generated using a multiple exponential-function approach. For visual representation, the outcomes are displayed through 3D, 2D, density, and contour plots. The wave transformation is then applied to convert the studied model into an ordinary differential equation. Following this, the dynamic nature of the model is examined from various viewpoints, including bifurcation, chaotic phenomena, multistability, and sensitivity analysis. Bifurcation shows how the solution of a planar system depends on equilibrium points, and when an outward periodic force is implemented to the unperturbed planar system, it reveals chaotic characteristics. These are analyzed using tools such as 3-dimensional and 2-dimensional plots, time scale plots, and Poincaré maps. Additionally, the model’s sensitivity is assessed with varying initial values. The results underscore the effectiveness and relevance of the proposed approaches for examining solitons within a broad spectrum of nonlinear systems.</p></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100926\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003127/pdfft?md5=ebe498884be147f2fba753ac825fcfac&pid=1-s2.0-S2666818124003127-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们研究了修正伊藤方程的深层特征,该方程可应用于各种科学领域,以表示受噪声和随机性影响的系统。利用多重指数函数方法成功生成了多孤子,包括 1 波、2 波和 3 波孤子。在可视化表示方面,结果通过三维、二维、密度和等值线图显示出来。然后,应用波变换将所研究的模型转换成常微分方程。然后,从分岔、混沌现象、多稳定性和敏感性分析等不同角度研究模型的动态性质。分岔显示了平面系统的解如何取决于平衡点,而当对未受扰动的平面系统施加向外的周期性力时,就会显示出混沌特性。利用三维和二维图、时间尺度图和波恩卡雷图等工具对这些特征进行了分析。此外,还评估了模型对不同初始值的敏感性。研究结果强调了所提出的方法在研究各种非线性系统中的孤子时的有效性和相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating multi-soliton patterns and dynamical characteristics of the (3+1)-dimensional equation via phase portraits

In this study, we investigate the deeper characteristics of the modified Ito equation, which can be applied across various scientific domains to represent systems influenced by noise and randomness. Multi-solitons, including 1-wave, 2-wave, and 3-wave solitons, have been successfully generated using a multiple exponential-function approach. For visual representation, the outcomes are displayed through 3D, 2D, density, and contour plots. The wave transformation is then applied to convert the studied model into an ordinary differential equation. Following this, the dynamic nature of the model is examined from various viewpoints, including bifurcation, chaotic phenomena, multistability, and sensitivity analysis. Bifurcation shows how the solution of a planar system depends on equilibrium points, and when an outward periodic force is implemented to the unperturbed planar system, it reveals chaotic characteristics. These are analyzed using tools such as 3-dimensional and 2-dimensional plots, time scale plots, and Poincaré maps. Additionally, the model’s sensitivity is assessed with varying initial values. The results underscore the effectiveness and relevance of the proposed approaches for examining solitons within a broad spectrum of nonlinear systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
期刊最新文献
Combined buoyancy and Marangoni convective heat transport of CNT-water nanofluid in an open chamber with influence of magnetic field and isothermal solid block Hydromagnetic blood flow through a channel of varying width bounded by porous media of finite thickness Application of the Atangana–Baleanu operator in Caputo sense for numerical solutions of the time-fractional Burgers–Fisher equation using finite difference approaches A rational optimal block hybrid method for enhanced accuracy in solving Lane–Emden equations Multi-parameter-based Box–Behnken design for optimizing energy transfer rate of Darcy–Forchheimer drag and mixed convective nanofluid flow over a permeable vertical surface with activation energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1