{"title":"通过双曲硬化关系为带有局部冲刷孔的单桩横向响应建立宏观要素模型","authors":"Hang Feng, Zhen-Yu Yin, Maozhu Peng","doi":"10.1016/j.apor.2024.104233","DOIUrl":null,"url":null,"abstract":"<div><p>Monopile is a popular choice in the foundation supporting offshore wind turbines (OWTs), with local scour significantly impacting their lateral responses. Macro-element model, which encapsulates the response between the monopile and the surrounding seabed soils into a force-displacement relation, has been extensively developed to describe offshore foundations. However, such kind of models specifically targeting monopiles subjected to lateral loading in local scour remain underdeveloped. This work proposes a macro-element model with a succinct hyperbolic hardening relation for laterally loaded monopiles in local scour conditions, using the evolutionary polynomial regression (EPR) machine learning technique for easy and optimal design. First, the finite element model is verified and extended to generate force-displacement responses considering the monopile geometries, soil characteristics, and local scour geometries. These results are then utilised to determine the optimal hyperbolic hardening relation of the macro-element model. Next, the EPR technique is employed to determine the relationship between the hyperbolic hardening relation parameters and the influencing factors. Finally, the macro-element model is successfully evaluated by comparing with measurements from centrifuge tests and numerical solutions by finite element analysis, demonstrating its applicability in practical design and the ability to reproduce FEA results with a significant reduction in computational cost.</p></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":"153 ","pages":"Article 104233"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macro-element modelling for lateral response of monopiles with local scour hole via hyperbolic hardening relation\",\"authors\":\"Hang Feng, Zhen-Yu Yin, Maozhu Peng\",\"doi\":\"10.1016/j.apor.2024.104233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Monopile is a popular choice in the foundation supporting offshore wind turbines (OWTs), with local scour significantly impacting their lateral responses. Macro-element model, which encapsulates the response between the monopile and the surrounding seabed soils into a force-displacement relation, has been extensively developed to describe offshore foundations. However, such kind of models specifically targeting monopiles subjected to lateral loading in local scour remain underdeveloped. This work proposes a macro-element model with a succinct hyperbolic hardening relation for laterally loaded monopiles in local scour conditions, using the evolutionary polynomial regression (EPR) machine learning technique for easy and optimal design. First, the finite element model is verified and extended to generate force-displacement responses considering the monopile geometries, soil characteristics, and local scour geometries. These results are then utilised to determine the optimal hyperbolic hardening relation of the macro-element model. Next, the EPR technique is employed to determine the relationship between the hyperbolic hardening relation parameters and the influencing factors. Finally, the macro-element model is successfully evaluated by comparing with measurements from centrifuge tests and numerical solutions by finite element analysis, demonstrating its applicability in practical design and the ability to reproduce FEA results with a significant reduction in computational cost.</p></div>\",\"PeriodicalId\":8261,\"journal\":{\"name\":\"Applied Ocean Research\",\"volume\":\"153 \",\"pages\":\"Article 104233\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Ocean Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141118724003547\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118724003547","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
Macro-element modelling for lateral response of monopiles with local scour hole via hyperbolic hardening relation
Monopile is a popular choice in the foundation supporting offshore wind turbines (OWTs), with local scour significantly impacting their lateral responses. Macro-element model, which encapsulates the response between the monopile and the surrounding seabed soils into a force-displacement relation, has been extensively developed to describe offshore foundations. However, such kind of models specifically targeting monopiles subjected to lateral loading in local scour remain underdeveloped. This work proposes a macro-element model with a succinct hyperbolic hardening relation for laterally loaded monopiles in local scour conditions, using the evolutionary polynomial regression (EPR) machine learning technique for easy and optimal design. First, the finite element model is verified and extended to generate force-displacement responses considering the monopile geometries, soil characteristics, and local scour geometries. These results are then utilised to determine the optimal hyperbolic hardening relation of the macro-element model. Next, the EPR technique is employed to determine the relationship between the hyperbolic hardening relation parameters and the influencing factors. Finally, the macro-element model is successfully evaluated by comparing with measurements from centrifuge tests and numerical solutions by finite element analysis, demonstrating its applicability in practical design and the ability to reproduce FEA results with a significant reduction in computational cost.
期刊介绍:
The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.