Jiefeng Xiao , Jiaqi Lu , Bo Niu , Xiaohua Liu , Junming Hong , Zhenming Xu
{"title":"锂离子废电池回收的生命周期事前评估:复杂的环境和经济影响建模","authors":"Jiefeng Xiao , Jiaqi Lu , Bo Niu , Xiaohua Liu , Junming Hong , Zhenming Xu","doi":"10.1016/j.ese.2024.100490","DOIUrl":null,"url":null,"abstract":"<div><p>The recycling of lithium-ion batteries (LIBs) is essential for promoting the closed-loop sustainable development of the LIB industry. However, progress in LIB recycling technologies is slow. There are significant gaps between academic research and industrial application, which hinder the industrialization of new technologies and the improvement of existing ones. Here we show a universal model for spent LIB-lithium recycling (<em>SliRec</em>) to evaluate the applicability and upgrading potential across various recycling technologies. Instead of modeling the entire recycling process, we focus on partial processes to enable a comparative analysis of environmental and economic impacts. We find a strong correlation between lithium concentration (LC) and the advancement of recycling technologies, where higher LC is associated with a reduced carbon footprint and increased economic benefits. The implementation of high-level recycling technology can result in an 85.91% reduction in carbon footprint and a 5.97-fold increase in economic returns. Additionally, we explore the effects of technological interventions through scenario analysis, demonstrating that while low-level recycling technology faces more substantial challenges in upgrading, it holds greater potential for reducing carbon emissions (−2.38 kg CO<sub>2</sub>-eq mol<sup>−1</sup>) and enhancing economic benefits (CNY 11.04 mol<sup>−1</sup>). Our findings emphasize the significance of process modeling in evaluating the quality of spent LIB recycling technologies, and can provide comparative information for the application of emerging technologies or the upgrade of existing ones.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"23 ","pages":"Article 100490"},"PeriodicalIF":14.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424001042/pdfft?md5=1971080c42e7dcd6ad524635469c9a0c&pid=1-s2.0-S2666498424001042-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Ex-ante life cycle evaluation of spent lithium-ion battery recovery: Modeling of complex environmental and economic impacts\",\"authors\":\"Jiefeng Xiao , Jiaqi Lu , Bo Niu , Xiaohua Liu , Junming Hong , Zhenming Xu\",\"doi\":\"10.1016/j.ese.2024.100490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The recycling of lithium-ion batteries (LIBs) is essential for promoting the closed-loop sustainable development of the LIB industry. However, progress in LIB recycling technologies is slow. There are significant gaps between academic research and industrial application, which hinder the industrialization of new technologies and the improvement of existing ones. Here we show a universal model for spent LIB-lithium recycling (<em>SliRec</em>) to evaluate the applicability and upgrading potential across various recycling technologies. Instead of modeling the entire recycling process, we focus on partial processes to enable a comparative analysis of environmental and economic impacts. We find a strong correlation between lithium concentration (LC) and the advancement of recycling technologies, where higher LC is associated with a reduced carbon footprint and increased economic benefits. The implementation of high-level recycling technology can result in an 85.91% reduction in carbon footprint and a 5.97-fold increase in economic returns. Additionally, we explore the effects of technological interventions through scenario analysis, demonstrating that while low-level recycling technology faces more substantial challenges in upgrading, it holds greater potential for reducing carbon emissions (−2.38 kg CO<sub>2</sub>-eq mol<sup>−1</sup>) and enhancing economic benefits (CNY 11.04 mol<sup>−1</sup>). Our findings emphasize the significance of process modeling in evaluating the quality of spent LIB recycling technologies, and can provide comparative information for the application of emerging technologies or the upgrade of existing ones.</p></div>\",\"PeriodicalId\":34434,\"journal\":{\"name\":\"Environmental Science and Ecotechnology\",\"volume\":\"23 \",\"pages\":\"Article 100490\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666498424001042/pdfft?md5=1971080c42e7dcd6ad524635469c9a0c&pid=1-s2.0-S2666498424001042-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Ecotechnology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666498424001042\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498424001042","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Ex-ante life cycle evaluation of spent lithium-ion battery recovery: Modeling of complex environmental and economic impacts
The recycling of lithium-ion batteries (LIBs) is essential for promoting the closed-loop sustainable development of the LIB industry. However, progress in LIB recycling technologies is slow. There are significant gaps between academic research and industrial application, which hinder the industrialization of new technologies and the improvement of existing ones. Here we show a universal model for spent LIB-lithium recycling (SliRec) to evaluate the applicability and upgrading potential across various recycling technologies. Instead of modeling the entire recycling process, we focus on partial processes to enable a comparative analysis of environmental and economic impacts. We find a strong correlation between lithium concentration (LC) and the advancement of recycling technologies, where higher LC is associated with a reduced carbon footprint and increased economic benefits. The implementation of high-level recycling technology can result in an 85.91% reduction in carbon footprint and a 5.97-fold increase in economic returns. Additionally, we explore the effects of technological interventions through scenario analysis, demonstrating that while low-level recycling technology faces more substantial challenges in upgrading, it holds greater potential for reducing carbon emissions (−2.38 kg CO2-eq mol−1) and enhancing economic benefits (CNY 11.04 mol−1). Our findings emphasize the significance of process modeling in evaluating the quality of spent LIB recycling technologies, and can provide comparative information for the application of emerging technologies or the upgrade of existing ones.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.