{"title":"脉冲红外热成像无损检测中的噪声抑制:数据处理算法的效率","authors":"V.P. Vavilov , A.O. Chulkov , V.V. Shiryaev , M.V. Kuimova , Hai Zhang","doi":"10.1016/j.ndteint.2024.103240","DOIUrl":null,"url":null,"abstract":"<div><p>Various types of noise, which accompany active TNDT procedures using optical heating, have been analyzed, both numerically and experimentally. An emphasis has been made on the suppression of surface clutter, which represents local areas of varying absorptivity/emissivity. The concept of signal-to-noise that is typically used in defect detection has been applied to fixed pattern noise in order to compare capabilities of data processing algorithms in reducing surface clutter. The experimental investigation has been fulfilled on a special sample containing both subsurface air-filled defects and areas with varying emissivity/absorptivity. The best suppression of the fixed pattern noise was provided by the complex wavelet transform and principle component analysis. Because of 3D heat diffusion, clutter spot boundaries are often underlined by particular data processing algorithms thus producing specific contours. The test situations where subsurface defects are located under localized clutter spots have been analyzed to demonstrate an overshadowing effect of such spots when detecting hidden defects.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"148 ","pages":"Article 103240"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise suppression in pulsed IR thermographic NDT: Efficiency of data processing algorithms\",\"authors\":\"V.P. Vavilov , A.O. Chulkov , V.V. Shiryaev , M.V. Kuimova , Hai Zhang\",\"doi\":\"10.1016/j.ndteint.2024.103240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Various types of noise, which accompany active TNDT procedures using optical heating, have been analyzed, both numerically and experimentally. An emphasis has been made on the suppression of surface clutter, which represents local areas of varying absorptivity/emissivity. The concept of signal-to-noise that is typically used in defect detection has been applied to fixed pattern noise in order to compare capabilities of data processing algorithms in reducing surface clutter. The experimental investigation has been fulfilled on a special sample containing both subsurface air-filled defects and areas with varying emissivity/absorptivity. The best suppression of the fixed pattern noise was provided by the complex wavelet transform and principle component analysis. Because of 3D heat diffusion, clutter spot boundaries are often underlined by particular data processing algorithms thus producing specific contours. The test situations where subsurface defects are located under localized clutter spots have been analyzed to demonstrate an overshadowing effect of such spots when detecting hidden defects.</p></div>\",\"PeriodicalId\":18868,\"journal\":{\"name\":\"Ndt & E International\",\"volume\":\"148 \",\"pages\":\"Article 103240\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ndt & E International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0963869524002056\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524002056","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Noise suppression in pulsed IR thermographic NDT: Efficiency of data processing algorithms
Various types of noise, which accompany active TNDT procedures using optical heating, have been analyzed, both numerically and experimentally. An emphasis has been made on the suppression of surface clutter, which represents local areas of varying absorptivity/emissivity. The concept of signal-to-noise that is typically used in defect detection has been applied to fixed pattern noise in order to compare capabilities of data processing algorithms in reducing surface clutter. The experimental investigation has been fulfilled on a special sample containing both subsurface air-filled defects and areas with varying emissivity/absorptivity. The best suppression of the fixed pattern noise was provided by the complex wavelet transform and principle component analysis. Because of 3D heat diffusion, clutter spot boundaries are often underlined by particular data processing algorithms thus producing specific contours. The test situations where subsurface defects are located under localized clutter spots have been analyzed to demonstrate an overshadowing effect of such spots when detecting hidden defects.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.