{"title":"植物模式识别受体:探索它们的进化、多样化和时空调控","authors":"Tianrun Li , Alba Moreno-Pérez , Gitta Coaker","doi":"10.1016/j.pbi.2024.102631","DOIUrl":null,"url":null,"abstract":"<div><p>Plant genomes possess hundreds of candidate surface localized receptors capable of recognizing microbial components or modified-self molecules. Surface-localized pattern recognition receptors (PRRs) can recognize proteins, peptides, or structural microbial components as nonself, triggering complex signaling pathways leading to defense. PRRs possess diverse extracellular domains capable of recognizing epitopes, lipids, glycans and polysaccharides. Recent work highlights advances in our understanding of the diversity and evolution of PRRs recognizing pathogen components. We also discuss PRR functional diversification, pathogen strategies to evade detection, and the role of tissue and age-related resistance for effective plant defense.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"82 ","pages":"Article 102631"},"PeriodicalIF":8.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plant Pattern recognition receptors: Exploring their evolution, diversification, and spatiotemporal regulation\",\"authors\":\"Tianrun Li , Alba Moreno-Pérez , Gitta Coaker\",\"doi\":\"10.1016/j.pbi.2024.102631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plant genomes possess hundreds of candidate surface localized receptors capable of recognizing microbial components or modified-self molecules. Surface-localized pattern recognition receptors (PRRs) can recognize proteins, peptides, or structural microbial components as nonself, triggering complex signaling pathways leading to defense. PRRs possess diverse extracellular domains capable of recognizing epitopes, lipids, glycans and polysaccharides. Recent work highlights advances in our understanding of the diversity and evolution of PRRs recognizing pathogen components. We also discuss PRR functional diversification, pathogen strategies to evade detection, and the role of tissue and age-related resistance for effective plant defense.</p></div>\",\"PeriodicalId\":11003,\"journal\":{\"name\":\"Current opinion in plant biology\",\"volume\":\"82 \",\"pages\":\"Article 102631\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in plant biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369526624001225\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526624001225","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Plant Pattern recognition receptors: Exploring their evolution, diversification, and spatiotemporal regulation
Plant genomes possess hundreds of candidate surface localized receptors capable of recognizing microbial components or modified-self molecules. Surface-localized pattern recognition receptors (PRRs) can recognize proteins, peptides, or structural microbial components as nonself, triggering complex signaling pathways leading to defense. PRRs possess diverse extracellular domains capable of recognizing epitopes, lipids, glycans and polysaccharides. Recent work highlights advances in our understanding of the diversity and evolution of PRRs recognizing pathogen components. We also discuss PRR functional diversification, pathogen strategies to evade detection, and the role of tissue and age-related resistance for effective plant defense.
期刊介绍:
Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.