植物细胞壁:植物与病原体相互作用中基于碳水化合物的信号源

IF 8.3 2区 生物学 Q1 PLANT SCIENCES Current opinion in plant biology Pub Date : 2024-09-21 DOI:10.1016/j.pbi.2024.102630
{"title":"植物细胞壁:植物与病原体相互作用中基于碳水化合物的信号源","authors":"","doi":"10.1016/j.pbi.2024.102630","DOIUrl":null,"url":null,"abstract":"<div><p>Plant cell walls are essential elements for disease resistance that pathogens need to overcome to colonise the host. Certain pathogens secrete a large battery of enzymes to hydrolyse plant cell wall polysaccharides, which leads to the release of carbohydrate-based molecules (glycans) that are perceived by plant pattern recognition receptors and activate pattern-triggered immunity and disease resistance. These released glycans are used by colonizing microorganisms as carbon source, chemoattractants to locate entry points at plant surface, and as signals triggering gene expression reprogramming. The release of wall glycans and their perception by plants and microorganisms determines plant-microbial interaction outcome. Here, we summarise and discuss the most recent advances in these less explored aspects of plant-microbe interaction.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624001213/pdfft?md5=9b3cccb746532c55406a1c639ceeda4d&pid=1-s2.0-S1369526624001213-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Plant cell walls: source of carbohydrate-based signals in plant-pathogen interactions\",\"authors\":\"\",\"doi\":\"10.1016/j.pbi.2024.102630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plant cell walls are essential elements for disease resistance that pathogens need to overcome to colonise the host. Certain pathogens secrete a large battery of enzymes to hydrolyse plant cell wall polysaccharides, which leads to the release of carbohydrate-based molecules (glycans) that are perceived by plant pattern recognition receptors and activate pattern-triggered immunity and disease resistance. These released glycans are used by colonizing microorganisms as carbon source, chemoattractants to locate entry points at plant surface, and as signals triggering gene expression reprogramming. The release of wall glycans and their perception by plants and microorganisms determines plant-microbial interaction outcome. Here, we summarise and discuss the most recent advances in these less explored aspects of plant-microbe interaction.</p></div>\",\"PeriodicalId\":11003,\"journal\":{\"name\":\"Current opinion in plant biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1369526624001213/pdfft?md5=9b3cccb746532c55406a1c639ceeda4d&pid=1-s2.0-S1369526624001213-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in plant biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369526624001213\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526624001213","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

植物细胞壁是抗病的基本要素,病原体需要克服这些要素才能在宿主体内定居。某些病原体会分泌大量酶来水解植物细胞壁多糖,从而释放出以碳水化合物为基础的分子(聚糖),这些分子会被植物模式识别受体感知,并激活模式触发免疫和抗病能力。定殖微生物利用这些释放的聚糖作为碳源和趋化吸引剂,以确定植物表面的进入点,并作为触发基因表达重编程的信号。植物和微生物对壁糖的释放和感知决定了植物与微生物相互作用的结果。在此,我们总结并讨论了植物与微生物相互作用中这些探索较少的方面的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plant cell walls: source of carbohydrate-based signals in plant-pathogen interactions

Plant cell walls are essential elements for disease resistance that pathogens need to overcome to colonise the host. Certain pathogens secrete a large battery of enzymes to hydrolyse plant cell wall polysaccharides, which leads to the release of carbohydrate-based molecules (glycans) that are perceived by plant pattern recognition receptors and activate pattern-triggered immunity and disease resistance. These released glycans are used by colonizing microorganisms as carbon source, chemoattractants to locate entry points at plant surface, and as signals triggering gene expression reprogramming. The release of wall glycans and their perception by plants and microorganisms determines plant-microbial interaction outcome. Here, we summarise and discuss the most recent advances in these less explored aspects of plant-microbe interaction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in plant biology
Current opinion in plant biology 生物-植物科学
CiteScore
16.30
自引率
3.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.
期刊最新文献
Enjoy the silence: Canonical and non-canonical RNA silencing activity during plant sexual reproduction The m6A-YTH regulatory system in plants: A status Unlocking diversity from wild relatives of perennial fruit crops in the pan-genomics era Current status of MSI research in Japan to measure the localization of natural products in plants Biosynthesis of oxindole alkaloids: Recent advances and challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1