爆炸对基于密度的三层聚氨酯泡沫的影响

IF 5.1 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Impact Engineering Pub Date : 2024-09-12 DOI:10.1016/j.ijimpeng.2024.105108
Kaviarasu K., Alagappan P.
{"title":"爆炸对基于密度的三层聚氨酯泡沫的影响","authors":"Kaviarasu K.,&nbsp;Alagappan P.","doi":"10.1016/j.ijimpeng.2024.105108","DOIUrl":null,"url":null,"abstract":"<div><p>Cellular solids are interesting materials for blast energy absorption because of their high porosity, cell structure, and unique mechanical properties. Also, it will undergo graded compression over the same foam density. Hence, in this study, an experimental investigation of blast pressure impact on the trilayered sequences made of three different polyurethane (PU) foam densities of equal thickness, such as D1-29.201 kg/m<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>, D2-59.692 kg/m<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>, and D3-107.720 kg/m<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> is carried out. The force transmitted <span><math><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>)</mo></mrow></math></span> on the reaction plate and incident force on the blast impact face are recorded. The maximum force amplification <span><math><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi><mi>m</mi><mi>p</mi></mrow></msub><mo>)</mo></mrow></math></span> of the 63.79% was observed in the S5 and the minimum of 6.19% in S4. Thus the reduction in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi><mi>m</mi><mi>p</mi></mrow></msub></math></span> in S4 compared to S5 is 90.3%. Similarly, the energy absorbed <span><math><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>a</mi><mi>b</mi><mi>s</mi></mrow></msub><mo>)</mo></mrow></math></span> by the trilayer is a maximum of 24.80 J in S2 and a minimum of 3.60 J in S3. The <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>a</mi><mi>b</mi><mi>s</mi></mrow></msub></math></span> increased to 85.48% in S2 solely by altering the layer sequences in S3. Hence, the location of the density in the layer sequences plays a key role in effective blast mitigation on different response measures.</p></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"195 ","pages":"Article 105108"},"PeriodicalIF":5.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0734743X24002331/pdfft?md5=f7c26cbc6f47a0b49f954fe8cb10d7ff&pid=1-s2.0-S0734743X24002331-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Blast impact on the density-based tri-layered polyurethane foam\",\"authors\":\"Kaviarasu K.,&nbsp;Alagappan P.\",\"doi\":\"10.1016/j.ijimpeng.2024.105108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cellular solids are interesting materials for blast energy absorption because of their high porosity, cell structure, and unique mechanical properties. Also, it will undergo graded compression over the same foam density. Hence, in this study, an experimental investigation of blast pressure impact on the trilayered sequences made of three different polyurethane (PU) foam densities of equal thickness, such as D1-29.201 kg/m<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>, D2-59.692 kg/m<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>, and D3-107.720 kg/m<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> is carried out. The force transmitted <span><math><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>)</mo></mrow></math></span> on the reaction plate and incident force on the blast impact face are recorded. The maximum force amplification <span><math><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi><mi>m</mi><mi>p</mi></mrow></msub><mo>)</mo></mrow></math></span> of the 63.79% was observed in the S5 and the minimum of 6.19% in S4. Thus the reduction in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi><mi>m</mi><mi>p</mi></mrow></msub></math></span> in S4 compared to S5 is 90.3%. Similarly, the energy absorbed <span><math><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>a</mi><mi>b</mi><mi>s</mi></mrow></msub><mo>)</mo></mrow></math></span> by the trilayer is a maximum of 24.80 J in S2 and a minimum of 3.60 J in S3. The <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>a</mi><mi>b</mi><mi>s</mi></mrow></msub></math></span> increased to 85.48% in S2 solely by altering the layer sequences in S3. Hence, the location of the density in the layer sequences plays a key role in effective blast mitigation on different response measures.</p></div>\",\"PeriodicalId\":50318,\"journal\":{\"name\":\"International Journal of Impact Engineering\",\"volume\":\"195 \",\"pages\":\"Article 105108\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0734743X24002331/pdfft?md5=f7c26cbc6f47a0b49f954fe8cb10d7ff&pid=1-s2.0-S0734743X24002331-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Impact Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0734743X24002331\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X24002331","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

蜂窝状固体因其高孔隙率、蜂窝结构和独特的机械特性,是一种有趣的爆炸能量吸收材料。此外,在相同的泡沫密度下,它还会受到分级压缩。因此,本研究对由三种不同密度的聚氨酯(PU)泡沫(如 D1-29.201 kg/m3、D2-59.692 kg/m3 和 D3-107.720 kg/m3)制成的等厚三层序列进行了爆炸压力冲击实验研究。记录反力板上传递的力 (FT) 和爆炸冲击面上的入射力。在 S5 中观察到的最大力放大(Famp)为 63.79%,而在 S4 中观察到的最小力放大(Famp)为 6.19%。因此,与 S5 相比,S4 的 Famp 减少了 90.3%。同样,三层膜吸收的能量(Eabs)在 S2 中最大为 24.80 J,在 S3 中最小为 3.60 J。仅通过改变 S3 中的层序,S2 中的 Eabs 就增加到了 85.48%。因此,在不同的响应措施中,层序中的密度位置对有效缓解爆炸起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blast impact on the density-based tri-layered polyurethane foam

Cellular solids are interesting materials for blast energy absorption because of their high porosity, cell structure, and unique mechanical properties. Also, it will undergo graded compression over the same foam density. Hence, in this study, an experimental investigation of blast pressure impact on the trilayered sequences made of three different polyurethane (PU) foam densities of equal thickness, such as D1-29.201 kg/m3, D2-59.692 kg/m3, and D3-107.720 kg/m3 is carried out. The force transmitted (FT) on the reaction plate and incident force on the blast impact face are recorded. The maximum force amplification (Famp) of the 63.79% was observed in the S5 and the minimum of 6.19% in S4. Thus the reduction in Famp in S4 compared to S5 is 90.3%. Similarly, the energy absorbed (Eabs) by the trilayer is a maximum of 24.80 J in S2 and a minimum of 3.60 J in S3. The Eabs increased to 85.48% in S2 solely by altering the layer sequences in S3. Hence, the location of the density in the layer sequences plays a key role in effective blast mitigation on different response measures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Impact Engineering
International Journal of Impact Engineering 工程技术-工程:机械
CiteScore
8.70
自引率
13.70%
发文量
241
审稿时长
52 days
期刊介绍: The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them: -Behaviour and failure of structures and materials under impact and blast loading -Systems for protection and absorption of impact and blast loading -Terminal ballistics -Dynamic behaviour and failure of materials including plasticity and fracture -Stress waves -Structural crashworthiness -High-rate mechanical and forming processes -Impact, blast and high-rate loading/measurement techniques and their applications
期刊最新文献
Research on the evolution of state field and damage range of multiple source cloud explosions Effect of pre-shock on the expanding fracture behavior of 1045 steel cylindrical shell under internal explosive loading Editorial Board A comment on “Plasticity, ductile fracture and ballistic impact behavior of Ti-6Al-4V Alloy” by Wu et al. (2023), Int. J. Impact Eng. 174:104493 Tensile properties and constitutive modeling of Kevlar29 fibers: From filaments to bundles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1