Abdul Mueed , He Ma , Philippe Madjirebaye , Akhtar Ali , Sajjad Ali , Jingwen Yu , Jing Li , Ze-yuan Deng
{"title":"亚麻籽油环素肽对高脂牛肉体外消化过程中脂质氧化、蛋白质氧化和脂质概况的影响","authors":"Abdul Mueed , He Ma , Philippe Madjirebaye , Akhtar Ali , Sajjad Ali , Jingwen Yu , Jing Li , Ze-yuan Deng","doi":"10.1016/j.foodchem.2024.141256","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the influence of flaxseed oil cyclolinopeptides (CLs) on lipid and protein oxidation during high-fat meat digestion. Fourteen CLs were identified in flaxseed oil through UHPLC-ESI-QTOF-MS/MS, with dominant CLA, CLB, CLE, and CLM. During <em>in vitro</em> digestion, CLs inhibited lipid oxidation products (lipid hydroperoxide, Malondialdehyde, and 4-hydroxynonenal) and protein carbonylation. Compared to other groups, the lipid (16.28 ± 0.35) and protein (17.5 ± 0.6) oxidation was significantly inhibited, and antioxidant activity was remarkably increased when the CLs content reached 200 mg/kg. Through untargeted lipidomic analysis using Q-Exactive, it was observed that CLs mitigated the formation of oxidized triglycerides (OxTG) products and enhanced the hydrolysis of lipids to generate sphingolipid and polyunsaturated fatty-acids enriched glycerophospholipids imparting nutritional value to meat. Electron spin-resonance and fluorescence quenching showed that primary radicals such as alkyl and alkoxy radicals during high-fat meat digestion with flaxseed oil CLs significantly mitigate their formation. These findings collectively indicate that consuming CLs enriched flaxseed oil could reduce lipid oxidation and enhance the nutritional value of high-fat meat during digestion.</p></div>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of flaxseed oil cyclolinopeptides on lipid oxidation, protein oxidation, and lipid profile during in vitro digestion of high-fat beef\",\"authors\":\"Abdul Mueed , He Ma , Philippe Madjirebaye , Akhtar Ali , Sajjad Ali , Jingwen Yu , Jing Li , Ze-yuan Deng\",\"doi\":\"10.1016/j.foodchem.2024.141256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigated the influence of flaxseed oil cyclolinopeptides (CLs) on lipid and protein oxidation during high-fat meat digestion. Fourteen CLs were identified in flaxseed oil through UHPLC-ESI-QTOF-MS/MS, with dominant CLA, CLB, CLE, and CLM. During <em>in vitro</em> digestion, CLs inhibited lipid oxidation products (lipid hydroperoxide, Malondialdehyde, and 4-hydroxynonenal) and protein carbonylation. Compared to other groups, the lipid (16.28 ± 0.35) and protein (17.5 ± 0.6) oxidation was significantly inhibited, and antioxidant activity was remarkably increased when the CLs content reached 200 mg/kg. Through untargeted lipidomic analysis using Q-Exactive, it was observed that CLs mitigated the formation of oxidized triglycerides (OxTG) products and enhanced the hydrolysis of lipids to generate sphingolipid and polyunsaturated fatty-acids enriched glycerophospholipids imparting nutritional value to meat. Electron spin-resonance and fluorescence quenching showed that primary radicals such as alkyl and alkoxy radicals during high-fat meat digestion with flaxseed oil CLs significantly mitigate their formation. These findings collectively indicate that consuming CLs enriched flaxseed oil could reduce lipid oxidation and enhance the nutritional value of high-fat meat during digestion.</p></div>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814624029066\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814624029066","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Effect of flaxseed oil cyclolinopeptides on lipid oxidation, protein oxidation, and lipid profile during in vitro digestion of high-fat beef
This study investigated the influence of flaxseed oil cyclolinopeptides (CLs) on lipid and protein oxidation during high-fat meat digestion. Fourteen CLs were identified in flaxseed oil through UHPLC-ESI-QTOF-MS/MS, with dominant CLA, CLB, CLE, and CLM. During in vitro digestion, CLs inhibited lipid oxidation products (lipid hydroperoxide, Malondialdehyde, and 4-hydroxynonenal) and protein carbonylation. Compared to other groups, the lipid (16.28 ± 0.35) and protein (17.5 ± 0.6) oxidation was significantly inhibited, and antioxidant activity was remarkably increased when the CLs content reached 200 mg/kg. Through untargeted lipidomic analysis using Q-Exactive, it was observed that CLs mitigated the formation of oxidized triglycerides (OxTG) products and enhanced the hydrolysis of lipids to generate sphingolipid and polyunsaturated fatty-acids enriched glycerophospholipids imparting nutritional value to meat. Electron spin-resonance and fluorescence quenching showed that primary radicals such as alkyl and alkoxy radicals during high-fat meat digestion with flaxseed oil CLs significantly mitigate their formation. These findings collectively indicate that consuming CLs enriched flaxseed oil could reduce lipid oxidation and enhance the nutritional value of high-fat meat during digestion.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture