$k$-AdaptEEGCS:基于自适应阈值的自动脑电图通道选择

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2024-09-11 DOI:10.1109/LSENS.2024.3458996
Abdullah;Ibrahima Faye;Mohammad Tanveer;Anudeep Vurity
{"title":"$k$-AdaptEEGCS:基于自适应阈值的自动脑电图通道选择","authors":"Abdullah;Ibrahima Faye;Mohammad Tanveer;Anudeep Vurity","doi":"10.1109/LSENS.2024.3458996","DOIUrl":null,"url":null,"abstract":"Electroencephalography (EEG) channel selection is crucial for improving the accuracy and efficiency of EEG-based brain-computer interfaces (BCI) and cognitive state monitoring systems. This research identifies the most informative EEG channels that provide maximum discriminative power for specific tasks or applications. However, the availability of multiple electrodes can lead to data redundancy and increased computational complexity. In addition, selecting suboptimal channels may result in poor signal quality and reduced classification accuracy. A method called \n<inline-formula><tex-math>$k$</tex-math></inline-formula>\n-adaptEEGCS is proposed in this study to address these challenges. \n<inline-formula><tex-math>$k$</tex-math></inline-formula>\n-adaptEEGCS utilizes a similarity-metric-based approach to measure the similarity of EEG channels within each cluster and identify the best EEG channels using an adaptive threshold. The results show that \n<inline-formula><tex-math>$k$</tex-math></inline-formula>\n-adaptEEGCS improves classification accuracy and reduces channel selection time in specific EEG groups compared to using all EEG channels. Furthermore, the efficacy and superiority of \n<inline-formula><tex-math>$k$</tex-math></inline-formula>\n-adaptEEGCS are demonstrated through an analysis of BCI competition datasets; the average accuracy and channel reduction rate achieved is 93.09% and 67%.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$k$-AdaptEEGCS: Adaptive Threshold Based Automatic EEG Channel Selection\",\"authors\":\"Abdullah;Ibrahima Faye;Mohammad Tanveer;Anudeep Vurity\",\"doi\":\"10.1109/LSENS.2024.3458996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroencephalography (EEG) channel selection is crucial for improving the accuracy and efficiency of EEG-based brain-computer interfaces (BCI) and cognitive state monitoring systems. This research identifies the most informative EEG channels that provide maximum discriminative power for specific tasks or applications. However, the availability of multiple electrodes can lead to data redundancy and increased computational complexity. In addition, selecting suboptimal channels may result in poor signal quality and reduced classification accuracy. A method called \\n<inline-formula><tex-math>$k$</tex-math></inline-formula>\\n-adaptEEGCS is proposed in this study to address these challenges. \\n<inline-formula><tex-math>$k$</tex-math></inline-formula>\\n-adaptEEGCS utilizes a similarity-metric-based approach to measure the similarity of EEG channels within each cluster and identify the best EEG channels using an adaptive threshold. The results show that \\n<inline-formula><tex-math>$k$</tex-math></inline-formula>\\n-adaptEEGCS improves classification accuracy and reduces channel selection time in specific EEG groups compared to using all EEG channels. Furthermore, the efficacy and superiority of \\n<inline-formula><tex-math>$k$</tex-math></inline-formula>\\n-adaptEEGCS are demonstrated through an analysis of BCI competition datasets; the average accuracy and channel reduction rate achieved is 93.09% and 67%.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"8 10\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10678879/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10678879/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

脑电图(EEG)通道的选择对于提高基于脑电图的脑机接口(BCI)和认知状态监测系统的准确性和效率至关重要。这项研究确定了信息量最大的脑电图通道,可为特定任务或应用提供最大的分辨力。然而,多个电极的可用性会导致数据冗余和计算复杂性增加。此外,选择次优通道可能会导致信号质量差和分类准确性降低。本研究提出了一种名为 $k$-adaptEEGCS 的方法来应对这些挑战。$k$-adaptEEGCS 利用基于相似性度量的方法来测量每个聚类中脑电图通道的相似性,并使用自适应阈值识别最佳脑电图通道。结果表明,与使用所有脑电图通道相比,$k$-adaptEEGCS 提高了分类准确性,减少了特定脑电图组的通道选择时间。此外,通过对 BCI 竞赛数据集的分析,证明了 $k$-adaptEEGCS 的有效性和优越性;平均准确率和通道减少率分别达到 93.09% 和 67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
$k$-AdaptEEGCS: Adaptive Threshold Based Automatic EEG Channel Selection
Electroencephalography (EEG) channel selection is crucial for improving the accuracy and efficiency of EEG-based brain-computer interfaces (BCI) and cognitive state monitoring systems. This research identifies the most informative EEG channels that provide maximum discriminative power for specific tasks or applications. However, the availability of multiple electrodes can lead to data redundancy and increased computational complexity. In addition, selecting suboptimal channels may result in poor signal quality and reduced classification accuracy. A method called $k$ -adaptEEGCS is proposed in this study to address these challenges. $k$ -adaptEEGCS utilizes a similarity-metric-based approach to measure the similarity of EEG channels within each cluster and identify the best EEG channels using an adaptive threshold. The results show that $k$ -adaptEEGCS improves classification accuracy and reduces channel selection time in specific EEG groups compared to using all EEG channels. Furthermore, the efficacy and superiority of $k$ -adaptEEGCS are demonstrated through an analysis of BCI competition datasets; the average accuracy and channel reduction rate achieved is 93.09% and 67%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
PPY-fMWCNT Nanocomposite-Based Chemicapacitive Biosensor for Ultrasensitive Detection of TBI-Specific GFAP Biomarker in Human Plasma Front Cover IEEE Sensors Council Information Table of Contents IEEE Sensors Letters Subject Categories for Article Numbering Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1