{"title":"通过 RME 和 MSE 比较不同腭部形态对上颌骨扩张的影响:有限元分析","authors":"Yaohui Pan, Wenjing Peng, Yanyu Wang","doi":"10.1002/cre2.70005","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objectives</h3>\n \n <p>This study aims to compare and analyze the biomechanical effect and the displacement trend of RME and MSE on the maxillofacial complex under different palatal shapes by using finite element analysis.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>The three-dimensional model of maxillofacial complex was obtained from a computed tomography image of a person with a normal palate. Then, we modified the shape of the palate to obtain the model with a high palate. Additionally, two expander devices were considered. MSE and RME were created and four models were made: Model 1: Normal-palate craniomaxillofacial complex with RME expander; Model 2: Normal-palate craniomaxillofacial complex with MSE expander; Model 3: High-palate craniomaxillofacial complex with RME expander; Model 4: High-palate craniomaxillofacial complex with MSE expander. Then, lateral forced displacement was applied and the analysis results were obtained.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The lateral displacement of the palatal suture of Model 3 is greater than that of Model 1, and the maxilla has more rotation. The crown/root ratio of Model 1 is significantly greater than that of the other three groups. Compared with Model 1, Model 3 has greater stress concentration in the superstructure of the craniomaxillofacial complex. Both of them have greater stress in the anchorage area than Model 2 and Model 4.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Different shapes of the palate interfere with the effects of RME and MSE, and its influence on the stress distribution and displacement of the craniomaxillary complex when using RME is greater than MSE. The lateral displacement of the palatal suture of MSE is significantly larger than that of RME. It is more prone to tipping movement of the anchor teeth using RME under normal palate, and MSE may manage the vertical control better due to the smaller crown/root ratio than RME and intrusive movement of molars.</p>\n </section>\n </div>","PeriodicalId":10203,"journal":{"name":"Clinical and Experimental Dental Research","volume":"10 5","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cre2.70005","citationCount":"0","resultStr":"{\"title\":\"Comparison of the Effects of Different Palatal Morphology on Maxillary Expansion via RME and MSE: A Finite Element Analysis\",\"authors\":\"Yaohui Pan, Wenjing Peng, Yanyu Wang\",\"doi\":\"10.1002/cre2.70005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objectives</h3>\\n \\n <p>This study aims to compare and analyze the biomechanical effect and the displacement trend of RME and MSE on the maxillofacial complex under different palatal shapes by using finite element analysis.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>The three-dimensional model of maxillofacial complex was obtained from a computed tomography image of a person with a normal palate. Then, we modified the shape of the palate to obtain the model with a high palate. Additionally, two expander devices were considered. MSE and RME were created and four models were made: Model 1: Normal-palate craniomaxillofacial complex with RME expander; Model 2: Normal-palate craniomaxillofacial complex with MSE expander; Model 3: High-palate craniomaxillofacial complex with RME expander; Model 4: High-palate craniomaxillofacial complex with MSE expander. Then, lateral forced displacement was applied and the analysis results were obtained.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The lateral displacement of the palatal suture of Model 3 is greater than that of Model 1, and the maxilla has more rotation. The crown/root ratio of Model 1 is significantly greater than that of the other three groups. Compared with Model 1, Model 3 has greater stress concentration in the superstructure of the craniomaxillofacial complex. Both of them have greater stress in the anchorage area than Model 2 and Model 4.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Different shapes of the palate interfere with the effects of RME and MSE, and its influence on the stress distribution and displacement of the craniomaxillary complex when using RME is greater than MSE. The lateral displacement of the palatal suture of MSE is significantly larger than that of RME. It is more prone to tipping movement of the anchor teeth using RME under normal palate, and MSE may manage the vertical control better due to the smaller crown/root ratio than RME and intrusive movement of molars.</p>\\n </section>\\n </div>\",\"PeriodicalId\":10203,\"journal\":{\"name\":\"Clinical and Experimental Dental Research\",\"volume\":\"10 5\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cre2.70005\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Dental Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cre2.70005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Dental Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cre2.70005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Comparison of the Effects of Different Palatal Morphology on Maxillary Expansion via RME and MSE: A Finite Element Analysis
Objectives
This study aims to compare and analyze the biomechanical effect and the displacement trend of RME and MSE on the maxillofacial complex under different palatal shapes by using finite element analysis.
Methods
The three-dimensional model of maxillofacial complex was obtained from a computed tomography image of a person with a normal palate. Then, we modified the shape of the palate to obtain the model with a high palate. Additionally, two expander devices were considered. MSE and RME were created and four models were made: Model 1: Normal-palate craniomaxillofacial complex with RME expander; Model 2: Normal-palate craniomaxillofacial complex with MSE expander; Model 3: High-palate craniomaxillofacial complex with RME expander; Model 4: High-palate craniomaxillofacial complex with MSE expander. Then, lateral forced displacement was applied and the analysis results were obtained.
Results
The lateral displacement of the palatal suture of Model 3 is greater than that of Model 1, and the maxilla has more rotation. The crown/root ratio of Model 1 is significantly greater than that of the other three groups. Compared with Model 1, Model 3 has greater stress concentration in the superstructure of the craniomaxillofacial complex. Both of them have greater stress in the anchorage area than Model 2 and Model 4.
Conclusion
Different shapes of the palate interfere with the effects of RME and MSE, and its influence on the stress distribution and displacement of the craniomaxillary complex when using RME is greater than MSE. The lateral displacement of the palatal suture of MSE is significantly larger than that of RME. It is more prone to tipping movement of the anchor teeth using RME under normal palate, and MSE may manage the vertical control better due to the smaller crown/root ratio than RME and intrusive movement of molars.
期刊介绍:
Clinical and Experimental Dental Research aims to provide open access peer-reviewed publications of high scientific quality representing original clinical, diagnostic or experimental work within all disciplines and fields of oral medicine and dentistry. The scope of Clinical and Experimental Dental Research comprises original research material on the anatomy, physiology and pathology of oro-facial, oro-pharyngeal and maxillofacial tissues, and functions and dysfunctions within the stomatognathic system, and the epidemiology, aetiology, prevention, diagnosis, prognosis and therapy of diseases and conditions that have an effect on the homeostasis of the mouth, jaws, and closely associated structures, as well as the healing and regeneration and the clinical aspects of replacement of hard and soft tissues with biomaterials, and the rehabilitation of stomatognathic functions. Studies that bring new knowledge on how to advance health on the individual or public health levels, including interactions between oral and general health and ill-health are welcome.